




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数与几何综合压轴题集合1.(2004安徽芜湖)如图,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D且AD与B相交于E点.已知:A(-2,-6),C(1,-3)(1) 求证:E点在y轴上;(2) 如果有一抛物线经过A,E,C三点,求此抛物线方程.C(1,-3)(2,-6)BDOxEy(3) 如果AB位置不变,再将DC水平向右移动k(k0)个单位,此时AD与BC相交于E点,如图,求AEC的面积S关于k的函数解析式.图 解 (1)(本小题介绍二种方法,供参考)方法一:过E作EOx轴,垂足OABEODC又DO+BO=DB AB=6,DC=3,EO=2又,DO=DO,即O与O重合,E在y轴上图C(1+k,-3)A(2,-6)BDOxEy方法二:由D(1,0),A(-2,-6)得DA直线方程:y=2x-2再由B(-2,0),C(1,-3),得BC直线方程:y=-x-2 联立得E点坐标(0,-2),即E点在y轴上(2)设抛物线的方程y=ax2+bx+c(a0)过A(-2,-6),C(1,-3)E(0,-2)三点,得方程组解得a=-1,b=0,c=-2抛物线方程y=-x2-2(3)(本小题给出三种方法,供参考)由(1)当DC水平向右平移k后,过AD与BC的交点E作EFx轴垂足为F。同(1)可得: 得:EF=2方法一:又EFAB,SAEC= SADC- SEDC=DB=3+kS=3+k为所求函数解析式方法二: BADC,SBCA=SBDASAEC= SBDES=3+k为所求函数解析式.证法三:SDECSAEC=DEAE=DCAB=12同理:SDECSDEB=12,又SDECSABE=DC2AB2=14S=3+k为所求函数解析式.2. (2004广东茂名)已知:如图,在直线坐标系中,以点M(1,0)为圆心、直径AC为的圆与y轴交于A、D两点.(1)求点A的坐标; (2)设过点A的直线yxb与x轴交于点B.探究:直线AB是否M的切线?并对你的结论加以证明; (3)连接BC,记ABC的外接圆面积为S1、M面积为S2,若,抛物线yax2bxc经过B、M两点,且它的顶点到轴的距离为.求这条抛物线的解析式. 解(1)解:由已知AM,OM1, 在RtAOM中,AO,点A的坐标为A(0,1)(2)证:直线yxb过点A(0,1)10b即b1yx1 令y0则x1 B(1,0),AB在ABM中,AB,AM,BM2 ABM是直角三角形,BAM90 直线AB是M的切线(3)解法一:由得BAC90,AB,AC2, BC BAC90ABC的外接圆的直径为BC,ABCDxMy 而,设经过点B(1,0)、M(1,0)的抛物线的解析式为:ya(1)(x1),(a0)即yax2a,a5,a5抛物线的解析式为y5x25或y5x25 解法二:(接上) 求得h5 由已知所求抛物线经过点B(1,0)、M(1、0),则抛物线的对称轴是y轴,由题意得抛物线的顶点坐标为(0,5)抛物线的解析式为ya(x0)25又B(1,0)、M(1,0)在抛物线上,a50, a5抛物线的解析式为 y5x25或y5x25 解法三:(接上)求得h5因为抛物线的方程为yax2bxc(a0)由已知得抛物线的解析式为 y5x25或y5x25. ABCOxyP(1,1)3.(2004湖北荆门)如图,在直角坐标系中,以点P(1,1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线过点A、B,且顶点C在P上.(1)求P上劣弧的长;(2)求抛物线的解析式;(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.解 (1)如图,连结PB,过P作PMx轴,垂足为M.在RtPMB中,PB=2,PM=1, MPB60,APB120 的长 (2)在RtPMB中,PB=2,PM=1,则MBMA.又OM=1,A(1,0),B(1,0),ABCOxyP(1,1)M由抛物线及圆的对称性得知点C在直线PM上,则C(1,3). 点A、B、C在抛物线上,则解之得 抛物线解析式为 (3)假设存在点D,使OC与PD互相平分,则四边形OPCD为平行四边形,且PCOD.又PCy轴,点D在y轴上,OD2,即D(0,2). 又点D(0,2)在抛物线上,故存在点D(0,2),使线段OC与PD互相平分. 4.(2004湖北襄樊)如图,在平面直角坐标系内,RtABC的直角顶点C(0,)在轴的正半轴上,A、B是轴上是两点,且OAOB31,以OA、OB为直径的圆分别交AC于点E,交BC于点F.直线EF交OC于点Q.(1)求过A、B、C三点的抛物线的解析式;(2)请猜想:直线EF与两圆有怎样的位置关系?并证明你的猜想.AyxBEFO1QOO2C(3)在AOC中,设点M是AC边上的一个动点,过M作MNAB交OC于点N.试问:在轴上是否存在点P,使得PMN是一个以MN为一直角边的等腰直角三角形?若存在,求出P点坐标;若不存在,请说明理由.解 (1)在RtABC中,OCAB,AOCCOB.OC2OAOB.OAOB31,C(0,),OB1.OA3.A(-3,0),B(1,0).设抛物线的解析式为则解之,得经过A、B、C三点的抛物线的解析式为:(2)EF与O1、O2都相切.证明:连结O1E、OE、OF.ECFAEOBFO90,四边形EOFC为矩形.QEQO.12.34,2+490, EF与O1相切.同理:EF理O2相切.(3)作MPOA于P,设MNa,由题意可得MPMNa. MNOA, CMNCAO.BAEFO1QOO2yx2134NMPC 解之,得此时,四边形OPMN是正方形.考虑到四边形PMNO此时为正方形,点P在原点时仍可满足PNN是以MN为一直角边的等腰直角三角形.故轴上存在点P使得PMN是一个以MN为一直角边的等腰直角三角形且或5.(2004湖北宜昌)如图,已知点A(0,1)、C(4,3)、E(,),P是以AC为对角线的矩形ABCD内部(不在各边上)的个动点,点D在y轴,抛物线yax2+bx+1以P为顶点(1)说明点A、C、E在一条条直线上;(2)能否判断抛物线yax2+bx+1的开口方向?请说明理由;(3)设抛物线yax2+bx+1与x轴有交点F、G(F在G的左侧),GAO与FAO的面积差为3,且这条抛物线与线段AE有两个不同的交点这时能确定a、b的值吗?若能,请求出a、b的值;若不能,请确定a、b的取值范围XOPDCABY(本题图形仅供分析参考用)解 (1)由题意,A(0,1)、C(4,3)确定的解析式为:y=x+1.将点E的坐标E(,)代入y=x+1中,左边=,右边=+1=,左边=右边,点E在直线y=x+1上,即点A、C、E在一条直线上.(2)解法一:由于动点P在矩形ABCD内部,点P的纵坐标大于点A的纵坐标,而点A与点P都在抛物线上,且P为顶点,故,这条抛物线有最高点,抛物线的开口向下解法二:抛物线y=ax2+bx+c的顶点P的纵坐标为,且P在矩形ABCD内部,13,由11得0,a0,抛物线的开口向下. (3)连接GA、FA,SGAOSFAO=3 GOAOFOAO=3 OA=1,GOFO=6. 设F(x1,0)、G(x2,0),则x1、x2为方程ax2+bx+c=0的两个根,且x1x2,又a0,x1x2=0,x10x2,GO= x2,FO= x1,x2(x1)=6,即x2+x1=6,x2+x1= =6,b= 6a, 抛物线解析式为:y=ax26ax+1, 其顶点P的坐标为(3,19a), 顶点P在矩形ABCD内部, 由方程组y=ax26ax+1y=x+1得:ax2(6a+)x=0119a3, a0. XGFOPDECABYx=0或x=6+.当x=0时,即抛物线与线段AE交于点A,而这条抛物线与线段AE有两个不同的交点,则有:06+,解得:a 综合得:a b= 6a,b0xy6.(2004湖南长沙)已知两点O(0,0)、B(0,2),A过点B且与x轴分别相交于点O、C,A被y轴分成段两圆弧,其弧长之比为31,直线l与A切于点O,抛物线的顶点在直线l上运动.(1)求A的半径;(2)若抛物线经过O、C两点,求抛物线的解析式;(3)过l上一点P的直线与A交于C、E两点,且PCCE,求点E的坐标;(4)若抛物线与x轴分别相交于C、F两点,其顶点P的横坐标为m,求PEC的面积关于m的函数解析式.解 (1)由弧长之比为31,可得BAO90 再由ABAOr,且OB2,得r(2)A的切线l过原点,可设l为ykx任取l上一点(b,kb),由l与y轴夹角为45可得:bkb或bkb,得k1或k1,直线l的解析式为yx或yx 又由r,易得C(2,0)或C(2,0) 由此可设抛物线解析式为yax(x2)或yax(x2)再把顶点坐标代入l的解析式中得a1抛物线为yx22x或yx22x6分(3)当l的解析式为yx时,由P在l上,可设P(m,m)(m0)过P作PPx轴于P,OP|m|,PP|m|,OP2m2,又由切割线定理可得:OP2PCPE,且PCCE,得PCPEmPP7分C与P为同一点,即PEx轴于C,m2,E(2,2)8分同理,当l的解析式为yx时,m2,E(2,2) (4)若C(2,0),此时l为yx,P与点O、点C不重合,m0且m2,当m0时,FC2(2m),高为|yp|即为m,S同理当0m2时,Sm22m;当m2时,Sm22m;S 又若C(2,0),AAB(2,0)CC(2,0)lOPEPxy(2,0)PClOyxCFFFPP此时l为yx,同理可得;S7.(2006江苏连云港)如图,直线与函数的图像交于A、B两点,且与x、y轴分别交于C、D两点(1)若的面积是的面积的倍,求与之间的函数关系式;yx(2)在(1)的条件下,是否存在和,使得以为直径的圆经过点若存在,求出和的值;若不存在,请说明理由解(1)设,(其中),由,得(), 又,即, yx由可得,代入可得 , ,即 又方程的判别式,所求的函数关系式为 (2)假设存在,,使得以为直径的圆经过点 则,过、分别作轴的垂线,垂足分别为、与都与互余, RtRt, , , 即 由(1)知,代入得,或,又,或,存在,使得以为直径的圆经过点,且或 8.(2004江苏镇江)已知抛物线与x轴交于两点、,与y轴交于点C,且AB=6.(1)求抛物线和直线BC的解析式.(2)在给定的直角坐标系中,画抛物线和直线BC.(3)若过A、B、C三点,求的半径.xyO(4)抛物线上是否存在点M,过点M作轴于点N,使被直线BC分成面积比为的两部分?若存在,请求出点M的坐标;若不存在,请说明理由.解 (1)解得 经检验m=1,抛物线的解析式为:或:由得,或 抛物线的解析式为 由得A(5,0),B(1,0),C(0,5).设直线BC的解析式为则直线BC的解析式为 (2)图象略.(3)法一:在中,. 又的半径 法二:由题意,圆心P在AB的中垂线上,即在抛物线的对称轴直线上,设P(2,h)(h0), 连结PB、PC,则,由,即,解得h=2. 的半径.法三:延长CP交于点F.为的直径,又 又 的半径为 (4)设MN交直线BC于点E,点M的坐标为则点E的坐标为 若则解得(不合题意舍去), 若则解得(不合题意舍去),存在点M,点M的坐标为或(15,280). 9. 如图,M与x轴交于A、B两点,其坐标分别为、,直径CDx轴于N,直线CE切M于点C,直线FG切M于点F,交CE于G,已知点G的横坐标为3.(1) 若抛物线经过A、B、D三点,求m的值及点D的坐标.(2) 求直线DF的解析式.(3) 是否存在过点G的直线,使它与(1)中抛物线的两个交点的横坐标之和等于4?若存在,请求出满足条件的直线的解析式;若不存在,请说明理由.(第9题图)AyxONMGFEDCB解 (1) 抛物线过A、B两点,m=3.抛物线为. 又抛物线过点D,由圆的对称性知点D为抛物线的顶点.D点坐标为. (2) 由题意知:AB=4.CDx轴,NA=NB=2. ON=1.由相交弦定理得:NANB=NDNC,NC4=22. NC=1.C点坐标为. 设直线DF交CE于P,连结CF,则CFP=90.2+3=1+4=90.GC、GF是切线,FBAyxONMGEDCP1234GC=GF. 3=4.1=2. GF=GP.GC=GP. 可得CP=8.P点坐标为 设直线DF的解析式为则 解得 直线DF的解析式为: (3) 假设存在过点G的直线为,则,. 由方程组 得 由题意得,. 当时,方程无实数根,方程组无实数解.满足条件的直线不存在. 10.(2004山西)已知二次函数的图象经过点A(3,6),并与x轴交于点B(1,0)和点C,顶点为P.(1)求这个二次函数的解析式,并在下面的坐标系中画出该二次函数的图象;(2)设D为线段OC上的一点,满足DPCBAC,求点D坐标;(3)在x轴上是否存在一点M,使以M为圆心的圆与AC、PC所在的直线及y轴都相切?如果存在,请求出点M的坐标;若不存在,请说明理由.xOy解 (1)解:二次函数的图象过点A(3,6),B(1,0),得 解得这个二次函数的解析式为:由解析式可求P(1,2),C(3,0)画出二次函数的图像(2)解法一:易证:ACBPCD45又已知:DPCBACDPCBAC易求 解法二:过A作AEx轴,垂足为E. 设抛物线的对称轴交x轴于F.亦可证AEBPFD、.易求:AE6,EB2,PF2 (3)存在.1)过M作MHAC,MGPC垂足分别为H、G,设AC交y轴于S,CP的延长线交y轴于TSCT是等腰直角三角形,M是SCT的内切圆圆心,MGMHOM又且OMMCOC 2)在x轴的负半轴上,存在一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州瓮安县平定营镇人民政府招聘公益性岗位人员考前自测高频考点模拟试题附答案详解
- 2025广西玉林市慈善总会公开招聘2人考前自测高频考点模拟试题带答案详解
- 2025辽宁鞍山市千山区公益性岗位招聘1人考前自测高频考点模拟试题及一套参考答案详解
- 2025甘肃金昌市金川区教育系统引进高层次和急需紧缺人才招聘12人(第二批)模拟试卷附答案详解(模拟题)
- 2025内蒙古选聘自治区特邀行政执法社会监督员考前自测高频考点模拟试题及参考答案详解1套
- 2025年西藏自治区烟草专卖局(公司)应届高校毕业生招聘29人模拟试卷及完整答案详解一套
- 2025安徽理工大学第一附属医院第二批紧缺岗位招聘14人模拟试卷及答案详解一套
- 2025年威海市环翠区卫生健康局所属事业单位公开招聘工作人员42人考前自测高频考点模拟试题及答案详解(网校专用)
- 2025安徽芜湖前湾集团有限公司选聘2名考前自测高频考点模拟试题及完整答案详解一套
- 2025江苏苏州工业园区青剑湖小学后勤辅助人员招聘1人模拟试卷附答案详解(模拟题)
- 《道路勘测设计》课件-第三章 平面设计
- 档案库房管理暂行办法
- 客运公司团建活动方案
- 学堂在线 英文科技论文写作与学术报告 期末考试答案
- 护理安全警示教育案例
- 青少年心理健康知识教育主题班会50
- 车辆损坏和解协议书
- 《围城》介绍课件
- 2025承包商入厂安全培训考试试题及完整答案(全优)
- 零基预算改革解读
- 2024年国家体育总局事业单位招聘笔试真题
评论
0/150
提交评论