浙江省高考数学总复习 第8单元 第4节 直线与圆、圆与圆的位置关系课件 文 新人教A版.ppt_第1页
浙江省高考数学总复习 第8单元 第4节 直线与圆、圆与圆的位置关系课件 文 新人教A版.ppt_第2页
浙江省高考数学总复习 第8单元 第4节 直线与圆、圆与圆的位置关系课件 文 新人教A版.ppt_第3页
浙江省高考数学总复习 第8单元 第4节 直线与圆、圆与圆的位置关系课件 文 新人教A版.ppt_第4页
浙江省高考数学总复习 第8单元 第4节 直线与圆、圆与圆的位置关系课件 文 新人教A版.ppt_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四节直线与圆 圆与圆的位置关系 基础梳理 1 直线与圆的位置关系判断方法 1 几何法 设圆心到直线的距离为d 圆半径为r 若直线与圆相离 则 若直线与圆相切 则 若直线与圆相交 则 2 代数法 将直线与圆的方程联立 若d 0 则 若d 0 则 若d 0 则直线与圆相离 2 两圆的位置关系 1 设两圆半径分别为r r r r 圆心距为d 若两圆相外离 则 公切线条数为 若两圆相外切 则 公切线条数为 若两圆相交 则 公切线条数为 若两圆内切 则 公切线条数为 若两圆内含 则 公切线条数为 2 设两圆c1 x2 y2 d1x e1y f1 0 c2 x2 y2 d2x e2y f2 0 若两圆相交 则两圆的公共弦所在的直线方程是 3 已知切点为p x0 y0 则圆x2 y2 r2的切线方程为 4 圆系方程 1 以点c x0 y0 为圆心的圆系方程为 2 过圆c x2 y2 dx ey f 0和直线l ax by c 0的交点的圆系方程为 3 过两圆c1 x2 y2 d1x e1y f1 0 c2 x2 y2 d2x e2y f2 0的交点的圆系方程为 不表示圆c2 答案 1 1 d rd rd r 2 直线与圆相交直线与圆相切2 1 d r r4d r r3r r d r r2d r r1d r r0 2 d1 d2 x e1 e2 y f1 f2 03 x0 x y0y r24 1 x x0 2 y y0 2 r2 r 0 2 x2 y2 dx ey f l ax by c 0 3 x2 y2 d1x e1y f1 l x2 y2 d2x e2y f2 0 基础达标 1 2011 湛江模拟 直线y x 1与圆x2 y2 1的位置关系为 a 相切b 相交但直线不过圆心c 直线过圆心d 相离2 教材改编题 若直线x y 2被圆 x a 2 y2 4所截得的弦长为2 则实数a的值为 a 1或b 1或3c 2或6d 0或4 3 教材改编题 圆o1 x2 y2 2x 0和圆o2 x2 y2 4y 0的位置关系是 a 相离b 相交c 外切d 内切 4 直线y x 1上的点到圆x2 y2 4x 2y 4 0上的点的最近距离是 a 2b 1c 2 1d 1 5 过圆c1 x 4 2 y 5 2 10与圆c2 x 2 2 y 7 2 12的交点的直线方程为 答案 1 b解析 圆心 0 0 到直线y x 1 即x y 1 0的距离d 而0 1 故选b 2 d解析 由题意知 d 即 a 2 2 解得a 4或a 0 3 b解析 由圆o1 x2 y2 2x 0得 x 1 2 y2 1 故圆心o1 1 0 半径r 1 由圆o2 x2 y2 4y 0得x2 y 2 2 4 故圆心o2 0 2 半径r 2 因为r r 2 1 o1o2 1 2 r r 两圆相交 故选b 4 c解析 圆心坐标为 2 1 则圆心到直线y x 1的距离为d 2 1 r 故最近距离是2 1 5 6x 2y 5 0解析 联立两圆方程两式相减得12x 4y 10 0 即6x 2y 5 0 所以所求的直线方程为6x 2y 5 0 题型一直线与圆的位置关系 例1 直线y kx 3与圆 x 3 2 y 2 2 4相交于m n两点 若 mn 2 则k的取值范围是 经典例题 解 由圆的方程知圆心为 3 2 圆心到y kx 3的距离d 且r 2 mn 2 r2 d2 4 2 3 化简得4k2 3k 0 解得 k 0 故选a 变式1 1直线x y m 0与圆x2 y2 2x 2 0相切 则实数m等于 答案 c解析 化为圆的标准方程为 x 1 2 y2 3 因为直线与圆相切 所以圆心 1 0 到直线的距离等于半径 即 即 m 2 所以m 或m 3 故选c 题型二圆与圆位置关系的判断及应用 例2 已知圆c1 x2 y2 2mx 4y m2 5 0 圆c2 x2 y2 2x 2my m2 3 0 试就m的取值讨论两圆的位置关系 解 圆c1 x m 2 y 2 2 9 圆c2 x 1 2 y m 2 4 两圆的圆心距 c1c2 r1 3 r2 2 1 当 c1c2 r1 r2 即 5时 解得m 5或m 2 故当m 5或m 2时 两圆外切 2 当 c1c2 r1 r2 即 1时 解得m 2或m 1 故当m 2或m 1时 两圆内切 3 当r1 r2r1 r2 即m2时 两圆外离 5 当 c1c2 r1 r2 即 2 m 1时 两圆内含 变式2 1已知圆x2 y2 25与圆心为c 1 半径为r r 0 的圆相切 则r的值为 答案 3或7解析 由圆x2 y2 25的圆心为c1 0 0 半径为5 因此两圆的圆心距d cc1 2 故两圆只能是内切 不能外切 故d cc1 2 5 r 解得r 3或r 7 题型三圆的弦长问题 例3 过原点且倾斜角为60 的直线被圆x2 y2 4y 0所截得的弦长为 a b 2c d 解 过原点且倾斜角为60 的直线方程为y x 圆的标准方程为x2 y 2 2 4 所以圆心 0 2 到直线的距离d 1 由垂径定理知所求弦长为2 2 故选d 变式3 1若 o1 x2 y2 5与 o2 x m 2 y2 20 m r 相交于a b两点 且两圆在点a处的切线互相垂直 则线段ab的长是 答案 4解析 由题知o1 0 0 o2 m 0 r1 r2 2 因为两圆相交 所以 m 3 又o1a ao2 在rt o1o2a中 m2 2 2 2 25 m 5 所以ab 2 4 题型四有关圆的最值问题 例4 与直线x y 2 0和曲线x2 y2 12x 12y 54 0都相切的半径最小的圆的标准方程是 解 x2 y2 12x 12y 54 0配方得 x 6 2 y 6 2 18 如下图所示 要使所求圆与直线和已知圆都相切且半径最小 必须使所求圆在直线和已知圆之间 圆心 6 6 到直线x y 2 0的距离为d 5 则所求圆的直径2r 5 3 2 r 易求所求圆的圆心坐标为 2 2 故所求圆的标准方程为 x 2 2 y 2 2 2 变式4 1由直线y x 1上的一点向圆 x 3 2 y2 1引切线 则切线长的最小值为 a 1b 2c d 3 答案 c解析 设圆心到直线y x 1的距离为d 则切线长的最小值为 而r 1 d 2 故选c 题型五简单的圆系方程及应用 例5 求过直线2x y 4 0和圆x2 y2 2x 4y 1 0的交点 且过原点的圆的方程 解 方法一 由解得交点坐标分别为a 3 2 b 设所求圆的方程为x2 y2 dx ey f 0 则解得d e f 0 故所求圆的方程为x2 y2 x y 0 方法二 设所求圆的方程为x2 y2 2x 4y 1 l 2x y 4 0 即x2 y2 2 1 l x l 4 y 1 4l 0 此圆过原点 1 4l 0 即l 故所求圆的方程为x2 y2 x y 0 故所求直线方程为y 5 x 3 即4x 3y 3 0 易错警示 例 求过a 3 5 且与圆c x2 y2 4x 4y 7 0相切的直线方程 错解设所求直线l的斜率为k 方程为y 5 k x 3 即kx y 5 3k 0 已知圆c的圆心 2 2 r 1 则圆心到l的距离为 k2 6k 9 k2 1 解得k 错解分析过圆外一点的圆的切线有两条 若求出k的值唯一 则应补上与x轴垂直的那一条 错解中漏掉了斜率不存在的情况 正解 1 若所求直线斜率存在 设其为k 方法同 错解 得k 即方程为4x 3y 3 0 2 若所求直线斜率不存在 则l的方程为x 3 经验证x 3与圆c相切 综上 所求切线方程为x 3或4x 3y 3 0 链接高考 2010 山东 已知圆c过点 1 0 且圆心在x轴的正半轴上 直线l y x 1被该圆所截得的弦长为2 则圆c的标准方程为 知识准备 1 设圆心坐标 a 0 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论