



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2.1向量加法运算及其几何意义问题导学一、向量加法运算活动与探究1(1)化简:;(2)已知O为正六边形ABCDEF的中心,求下列向量:;迁移与应用化简:(1);(2)四边形ABCD是边长为1的正方形,a,b,c,求作向量abc,并求|abc|解决该类题目要灵活应用向量加法运算律,注意各向量的起、终点及向量起、终点字母排列顺序,特别注意勿将0写成0二、利用向量知识证明几何问题活动与探究2用向量方法证明对角线互相平分的四边形是平行四边形迁移与应用在平行四边形ABCD的对角线BD的延长线及反向延长线上,分别取点F,E,使BE=DF(如图),用向量的方法证明四边形AECF也是平行四边形1用向量法证明几何问题的一般步骤:(1)要把几何问题中的边转化成相应的向量(2)通过向量的运算及其几何意义得到向量间的关系(3)还原成几何问题2注意以下两个问题:(1)法则的灵活应用(2)要注意有向线段表示的向量相等,说明有向线段所在直线平行或重合且线段的长度相等三、向量加法的实际应用活动与探究3在四川汶川“512”大地震后,一架救援直升飞机从A地沿北偏东60方向飞行了40 km到达B地,再由B地沿正北方向飞行40 km到达C地,求此时直升飞机与A地的相对位置迁移与应用在长江某渡口上,江水以2 km/h的速度向东流,长江南岸的一艘渡船的速度为2 km/h,要使渡船渡江的时间最短,求渡船实际航行的速度的大小和方向向量应用题要首先画出图形解决的步骤是:(1)将应用问题中的量抽象成向量;(2)化归为向量问题,进行向量运算;(3)将向量问题还原为实际问题当堂检测1在四边形ABCD中,则()AABCD一定是矩形BABCD一定是菱形CABCD一定是正方形DABCD一定是平行四边形2()A0 B0C2 D23下列等式不成立的是()A0aa BabbaC2 D4化简()()_5若a“向北走8 km”,b“向东走8 km”,则|ab|_;ab的方向是_提示:用最精炼的语言把你当堂掌握的核心知识的精华部分和基本技能的要领部分写下来并进行识记答案:课前预习导学【预习导引】1两个向量和2和abab三角形法则3平行四边形法则4ba(ab)ca(bc)预习交流1提示:a0a预习交流2提示:不一定,当两向量共线时不能用平行四边形法则,只能用三角形法则课堂合作探究【问题导学】活动与探究1思路分析:根据加法的交换律使各向量首尾相接,再运用向量的结合律,调整向量顺序相加解:(1);0;()()0(2)由题图知,OAFE为平行四边形,;由题图知,OABC为平行四边形,;由题图知,AEDB为平行四边形,迁移与应用解:(1)()(2)如下图,延长AC到E,使AC=CE,则=,a+b+c=+=,即为所求作的向量四边形ABCD是边长为1的正方形,|=,|=2|=故|a+b+c|=活动与探究2思路分析:要证四边形是平行四边形,只需证一组对边平行且相等根据向量相等的意义,只需证其一组对边对应的向量相等即可此问题是纯文字叙述的问题,首先应转化为符号语言描述证明:根据向量加法的三角形法则有=+,=+又=,=,+=+=ABDC且AB=DC,即AB与DC平行且相等四边形ABCD是平行四边形迁移与应用证明:=+,=+,又=,=,=,即AE,FC平行且相等故四边形AECF是平行四边形活动与探究3思路分析:利用向量加法的三角形法则,知,|是线段AC的长度解:如图所示,设,分别是直升飞机的两次位移,则表示两次位移的合位移,即在RtABD中,|20 km,|20 km在RtACD中,|40 km,CAD60,即此时直升飞机位于A地北偏东30方向,且距离A地40 km处迁移与应用解:要使渡江的时间最短,渡船应向垂直于对岸的方向行驶,设渡船速度为v1,水流速度为v2,船实际航行的速度为v,则vv1v2依题意作出平行四边形,如图在RtABC中,|v1|2,|v2|2,|v|4,tan 60渡船实际航行的速度大小为4 km/h,方向为东偏北60【当堂检测】1D解析:由知由A,B,C,D构成的四边形一定是平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度水电暖设施设备采购及安装服务合同范本
- 2025版售楼部建筑施工与物业管理服务合同
- 2025年特色商业街门面房屋租赁服务协议
- 2025年农旅融合项目特色烧鸭供应链合作协议
- 河北省安平县2025年上半年公开招聘城市协管员试题含答案分析
- 2025年度厨房设备环保检测与认证服务合同
- 2025年度食堂废弃物处理承包合同范例
- 2025第二行政小区垃圾分类宣传与保洁服务合同
- 2025版食用油企业安全生产责任书合同范本
- 贵州省湄潭县2025年上半年公开招聘村务工作者试题含答案分析
- 学校物业服务应急事件处理预案
- 单位车辆管理委托协议书示例3篇
- 人工智能赋能教育:技术变革与教学创新
- 木制棺木项目可行性研究报告
- 2023年高考生物试卷(福建)(答案卷)
- 跨国知识产权争议解决机制-全面剖析
- 孔子的故事课件
- 直肠癌护理疑难病例讨论
- 妇产科危重护理常规、应急预案、工作流程
- 土木工程毕业设计最终模板
- 彩妆行业发展趋势
评论
0/150
提交评论