高考数学一轮复习 126 离散型随机变量的均值与方差课件 新人教A版.ppt_第1页
高考数学一轮复习 126 离散型随机变量的均值与方差课件 新人教A版.ppt_第2页
高考数学一轮复习 126 离散型随机变量的均值与方差课件 新人教A版.ppt_第3页
高考数学一轮复习 126 离散型随机变量的均值与方差课件 新人教A版.ppt_第4页
高考数学一轮复习 126 离散型随机变量的均值与方差课件 新人教A版.ppt_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

最新考纲1 理解取有限个值的离散型随机变量的均值 方差的概念 2 能计算简单离散型随机变量的均值 方差 并能解决一些简单实际问题 第6讲离散型随机变量的均值与方差 1 离散型随机变量的均值与方差若离散型随机变量x的分布列为 1 均值称e x 为随机变量x的均值或 它反映了离散型随机变量取值的 知识梳理 x1p1 x2p2 xipi xnpn 数学期望 平均水平 2 均值与方差的性质 1 e ax b 2 d ax b a b为常数 3 两点分布与二项分布的均值 方差 1 若x服从两点分布 则e x p d x 2 若x b n p 则e x np d x 平均偏离程度 标准差 ae x b a2d x p 1 p np 1 p 1 判断正误 请在括号中打 或 精彩ppt展示 1 期望值就是算术平均数 与概率无关 2 随机变量的均值是常数 样本的平均值是随机变量 它不确定 3 随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度 方差或标准差越小 则偏离变量平均程度越小 4 均值与方差都是从整体上刻画离散型随机变量的情况 因此它们是一回事 诊断自测 2 已知某一随机变量x的分布列如下 且e x 6 3 则a的值为 a 5b 6c 7d 8解析由分布列性质知 0 5 0 1 b 1 b 0 4 e x 4 0 5 a 0 1 9 0 4 6 3 a 7 答案c 3 2014 陕西卷 设样本数据x1 x2 x10的均值和方差分别为1和4 若yi xi a a为非零常数 i 1 2 10 则y1 y2 y10的均值和方差分别为 a 1 a 4b 1 a 4 ac 1 4d 1 4 a解析将每个数据都加上a后均值也增加a 方差不变 故选a 答案a a 5b 8c 10d 16答案b 5 人教a选修2 3p69b1改编 抛掷两枚骰子 当至少一枚5点或一枚6点出现时 就说这次试验成功 则在10次试验中成功次数的均值为 考点一离散型随机变量的均值与方差 例1 2013 浙江卷 设袋子中装有a个红球 b个黄球 c个蓝球 且规定 取出一个红球得1分 取出一个黄球得2分 取出一个蓝球得3分 1 当a 3 b 2 c 1时 从该袋子中任取 有放回 且每球取到的机会均等 2个球 记随机变量x为取出此2球所得分数之和 求x的分布列 所以x的分布列为 2 由题意知y的分布列为 规律方法 1 求离散型随机变量的均值与方差关键是确定随机变量的所有可能值 写出随机变量的分布列 正确运用均值 方差公式进行计算 2 注意性质的应用 若随机变量x的均值为e x 则对应随机变量ax b的均值是ae x b 方差为a2d x 训练1 袋中有20个大小相同的球 其中记上0号的有10个 记上n号的有n个 n 1 2 3 4 现从袋中任取一球 x表示所取球的标号 1 求x的分布列 期望和方差 2 若y ax b e y 1 d y 11 试求a b的值 解 1 x的分布列为 考点二与二项分布有关的均值 方差 1 若小明选择方案甲抽奖 小红选择方案乙抽奖 记他们的累计得分为x 求x 3的概率 2 若小明 小红两人都选择方案甲或都选择方案乙进行抽奖 问 他们选择何种方案抽奖 累计得分的数学期望较大 2 法一设小明 小红都选择方案甲抽奖中奖次数为x1 都选择方案乙抽奖中奖次数为x2 则这两人选择方案甲抽奖累计得分的数学期望为e 2x1 选择方案乙抽奖累计得分的数学期望为e 3x2 法二设小明 小红都选择方案甲所获得的累计得分为y1 都选择方案乙所获得的累计得分为y2 则y1 y2的分布列为 规律方法求随机变量x的均值与方差时 可首先分析x是否服从二项分布 如果x b n p 则用公式e x np d x np 1 p 求解 可大大减少计算量 训练2 2014 辽宁卷 一家面包房根据以往某种面包的销售记录 绘制了日销售量的频率分布直方图 如图所示 将日销售量落入各组的频率视为概率 并假设每天的销售量相互独立 1 求在未来连续3天里 有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率 2 用x表示在未来3天里日销售量不低于100个的天数 求随机变量x的分布列 数学期望e x 及方差d x 解 1 设a1表示事件 日销售量不低于100个 a2表示事件 日销售量低于50个 b表示事件 在未来连续3天里 有连续2天的日销售量都不低于100个且另1天的日销售量低于50个 因此 p a1 0 006 0 004 0 002 50 0 6 p a2 0 003 50 0 15 p b 0 6 0 6 0 15 2 0 108 分布列为因为x b 3 0 6 所以数学期望e x 3 0 6 1 8 方差d x 3 0 6 1 0 6 0 72 考点三均值与方差在决策中的应用 例3 2014 湖北卷 计划在某水库建一座至多安装3台发电机的水电站 过去50年的水文资料显示 水库年入流量x 年入流量 一年内上游来水与库区降水之和 单位 亿立方米 都在40以上 其中 不足80的年份有10年 不低于80且不超过120的年份有35年 超过120的年份有5年 将年入流量在以上三段的频率作为相应段的概率 并假设各年的年入流量相互独立 1 求未来4年中 至多有1年的年入流量超过120的概率 2 水电站希望安装的发电机尽可能运行 但每年发电机最多可运行台数受年入流量x限制 并有如下关系 若某台发电机运行 则该台年利润为5000万元 若某台发电机未运行 则该台年亏损800万元 欲使水电站年总利润的均值达到最大 应安装发电机多少台 2 记水电站年总利润为y 单位 万元 安装1台发电机的情形 由于水库年入流量总大于40 故一台发电机运行的概率为1 对应的年利润y 5000 e y 5000 1 5000 安装2台发电机的情形 依题意 当40 x 80时 一台发电机运行 此时y 5000 800 4200 因此p y 4200 p 40 x 80 p1 0 2 当x 80时 两台发电机运行 此时y 5000 2 10000 因此p y 10000 p x 80 p2 p3 0 8 由此得y的分布列如下所以 e y 4200 0 2 10000 0 8 8840 安装3台发电机的情形 依题意 当40120时 三台发电机运行 此时y 5000 3 15000 因此p y 15000 p x 120 p3 0 1 因此得y的分布列如下所以 e y 3400 0 2 9200 0 7 15000 0 1 8620 综上 欲使水电站年总利润的均值达到最大 应安装发电机2台 规律方法随机变量的均值反映了随机变量取值的平均水平 方差反映了随机变量稳定于均值的程度 它们从整体和全局上刻画了随机变量 是生产实际中用于方案取舍的重要理论依据 一般先比较均值 若均值相同 再用方差来决定 训练3 某投资公司在2015年年初准备将1000万元投资到 低碳 项目上 现有两个项目供选择 针对以上两个投资项目 请你为投资公司选择一个合理的项目 并说明理由 解若按 项目一 投资 设获利为x1万元 则x1的分布列为 若按 项目二 投资 设获利x2万元 则x2的分布列为 所以e x1 e x2 d x1 d x2 这说明虽然项目一 项目二获利相等 但项目一更稳妥 综上所述 建议该投资公司选择项目一投资 微型专题概率的创新题型近年来 概率统计已成为高考的重点 热点 注意考查学生分析数据 提取信息 解决实际问题的应用能力 它可以与其他知识相互融合 形成一些背景 样式新颖的题型 例4 2013 四川卷 某算法的程序框图如图所示 其中输入的变量x在1 2 3 24这24个整数中等可能随机产生 1 分别求出按程序框图正确编程运行时输出y的值为i的概率pi i 1 2 3 2 甲 乙两同学依据自己对程序框图的理解 各自编写程序重复运行n次后 统计记录了输出y的值为i i 1 2 3 的频数 以下是甲 乙所作频数统计表的部分数据 甲的频数统计表 部分 乙的频数统计表 部分 当n 2100时 根据表中的数据 分别写出甲 乙所编程序各自输出y的值为i i 1 2 3 的频率 用分数表示 并判断两位同学中哪一位所编程序符合算法要求的可能性较大 3 将按程序框图正确编写的程序运行3次 求输出y的值为2的次数x的分布列及数学期望 点拨 1 运行程序框图 分别数出输出y的值为1 2 3的数的个数 即事件包含的基本事件个数 利用古典概型公式求解 2 利用已知条件中频数统计表得出各小组频数 利用频率公式得频率 再与 1 的结论比较 得出结论 2 当n 2100时 甲 乙所编程序各自输出y的值为i i 1 2 3 的频率如下 比较频率趋势与概率 可得乙同学所编程序符合算法要求的可能性较大 故x的分布列为 点评 1 本题将程序框图 古典概型 独立重复试验及随机变量分布列结合起来考查 具有一定的综合性 同时形式也比较新颖 2 本题注重考查学生的识图 用图能力 数据处理能力 分析问题解决问题的能力等基本能力 思想方法 1 掌握下述均值与方差有关性质 会给解题带来方便 1 e ax b ae x b e x y e x e y d ax b a2d x 2 若x b n p 则e x np d x np 1 p 2 基本方法 1 已知随机变量的分布列求它的均值 方差和标准差 可直接按定义 公式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论