




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
汕头市2018-2019学年第二学期普通高中教学质量期末监测高一数学一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合,则()A. B. C. D. 【答案】A【解析】【分析】首先求得集合,根据交集定义求得结果.【详解】 本题正确选项:【点睛】本题考查集合运算中的交集运算,属于基础题.2.已知平行四边形对角线与交于点,设,则()A. B. C. D. 【答案】B【解析】【分析】根据向量减法的三角形法则和数乘运算直接可得结果.【详解】 本题正确选项:【点睛】本题考查向量的线性运算问题,涉及到向量的减法和数乘运算的应用,属于基础题.3.同时掷两个骰子,向上的点数之和是的概率是()A. B. C. D. 【答案】C【解析】【分析】分别计算出所有可能的结果和点数之和为的所有结果,根据古典概型概率公式求得结果.【详解】同时掷两个骰子,共有种结果其中点数之和是的共有:,共种结果点数之和是的概率为:本题正确选项:【点睛】本题考查古典概型问题中的概率的计算,关键是能够准确计算出总体基本事件个数和符合题意的基本事件个数,属于基础题.4.下列函数中,在区间上为增函数的是A. B. C. D. 【答案】A【解析】试题分析:对A,函数在上为增函数,符合要求;对B,在上为减函数,不符合题意;对C,为上的减函数,不符合题意;对D,在上为减函数,不符合题意.故选A.考点:函数的单调性,容易题.5.已知等差数列的前项和为, ,则()A. B. C. D. 【答案】A【解析】【分析】利用等差数列下标和的性质可计算得到,由计算可得结果.【详解】由得: 本题正确选项:【点睛】本题考查等差数列性质的应用,涉及到等差数列下标和性质和等差中项的性质应用,属于基础题.6.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则()A. B. C. D. 【答案】D【解析】【分析】根据任意角三角函数定义可求得;根据诱导公式可将所求式子化为,代入求得结果.【详解】由得:本题正确选项:【点睛】本题考查任意角三角函数值求解、利用诱导公式化简求值问题;关键是能够通过角的终边上的点求得角的三角函数值.7.棉花的纤维长度是棉花质量的重要指标在一批棉花中抽测了根棉花的纤维长度(单位:),将样本数据作成如下的频率分布直方图:下列关于这批棉花质量状况的分析,不合理的是()A. 这批棉花的纤维长度不是特别均匀B. 有一部分棉花的纤维长度比较短C. 有超过一半的棉花纤维长度能达到以上D. 这批棉花有可能混进了一些次品【答案】C【解析】【分析】根据频率分布直方图计算纤维长度超过的频率,可知不超过一半,从而得到结果.【详解】由频率分布直方图可知,纤维长度超过的频率为: 棉花纤维长度达到以上的不超过一半 不合理本题正确选项:【点睛】本题考查利用频率分布直方图估计总体数据的分布特征,关键是能够熟练掌握利用频率分布直方图计算频率的方法.8.若,则的最小值为()A. B. C. D. 【答案】D【解析】【分析】根据对数运算可求得且,利用基本不等式可求得最小值.【详解】由得:且,(当且仅当时取等号)本题正确选项:【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够利用对数运算得到积的定值,属于基础题.9.设,且,则()A. B. C. D. 【答案】B【解析】【分析】利用两角和差正切公式可求得;根据范围可求得;利用两角和差公式计算出;利用两角和差余弦公式计算出结果.【详解】 ,又本题正确选项:【点睛】本题考查利用三角恒等变换中的两角和差的正余弦和正切公式求解三角函数值的问题,涉及到同角三角函数关系的应用;关键是能够熟练应用两角和差公式进行配凑,求得所需的三角函数值.10.已知向量,若向量与的夹角为,则实数()A. B. C. D. 【答案】B【解析】【分析】根据坐标运算可求得与,从而得到与;利用向量夹角计算公式可构造方程求得结果.详解】由题意得:,解得:本题正确选项:【点睛】本题考查利用向量数量积、模长和夹角求解参数值的问题,关键是能够通过坐标运算表示出向量和模长,进而利用向量夹角公式构造方程.11.将函数的图象向右平移个单位长度后得到函数的图象,若当时, 的图象与直线恰有两个公共点,则的取值范围为()A. B. C. D. 【答案】C【解析】【分析】根据二倍角和辅助角公式化简可得,根据平移变换原则可得;当时,;利用正弦函数的图象可知若的图象与直线恰有两个公共点可得,解不等式求得结果.【详解】由题意得:由图象平移可知:当时,又的图象与直线恰有两个公共点,解得:本题正确选项:【点睛】本题考查根据交点个数求解角的范围的问题,涉及到利用二倍角和辅助角公式化简三角函数、三角函数图象平移变换原则的应用等知识;关键是能够利用正弦函数的图象,采用数形结合的方式确定角所处的范围.12.设函数是定义为R的偶函数,且对任意的,都有且当时, ,若在区间内关于的方程恰好有3个不同的实数根,则的取值范围是 ( )A. B. C. D. 【答案】D【解析】对于任意的xR,都有f(x2)=f(2+x),函数f(x)是一个周期函数,且T=4.又当x2,0时,f(x)=1,且函数f(x)是定义在R上的偶函数,若在区间(2,6内关于x的方程恰有3个不同的实数解,则函数y=f(x)与y=在区间(2,6上有三个不同的交点,如下图所示:又f(2)=f(2)=3,则对于函数y=,由题意可得,当x=2时的函数值小于3,当x=6时的函数值大于3,即3,由此解得:a2,故答案为:(,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解二、填空题(将答案填在答题纸上)13.已知是奇函数,且,则_【答案】【解析】【分析】根据奇偶性定义可知,利用可求得,从而得到;利用可求得结果.【详解】奇函数 又 即,解得:本题正确结果:【点睛】本题考查根据函数的奇偶性求解函数值的问题,属于基础题.14.抽样调查某地区名教师的年龄和学历状况,情况如下饼图:则估计该地区岁以下具有研究生学历的教师百分比为_【答案】【解析】【分析】根据饼状图中的岁以下本科学历人数和占比可求得岁以下教师总人数,从而可得其中的具有研究生学历的教师人数,进而得到所求的百分比.【详解】由岁以下本科学历人数和占比可知,岁以下教师总人数为:人岁以下有研究生学历的教师人数为:人岁以下有研究生学历的教师的百分比为:本题正确结果:【点睛】本题考查利用饼状图计算总体中的数据分布和频率分布的问题,属于基础题.15.己知为数列的前项和,且,则_【答案】【解析】【分析】根据可知,得到数列为等差数列;利用等差数列前项和公式构造方程可求得;利用等差数列通项公式求得结果.【详解】由得:,即:数列是公差为的等差数列又 ,解得:本题正确结果:【点睛】本题考查等差数列通项公式、前项和公式的应用,关键是能够利用判断出数列为等差数列,进而利用等差数列中的相关公式来进行求解.16.在中,角的对边分别为,且面积为,则面积的最大值为_【答案】【解析】【分析】利用三角形面积构造方程可求得,可知,从而得到;根据余弦定理,结合基本不等式可求得,代入三角形面积公式可求得最大值.【详解】 ,由余弦定理得:(当且仅当时取等号) 本题正确结果:【点睛】本题考查解三角形问题中的三角形面积的最值问题的求解;求解最值问题的关键是能够通过余弦定理构造等量关系,进而利用基本不等式求得边长之积的最值,属于常考题型.三、解答题(解答应写出文字说明、证明过程或演算步骤) 17.已知函数(其中,)的最小正周期为,且图象经过点(1)求函数的解析式:(2)求函数的单调递增区间【答案】(1) ;(2) ,.【解析】【分析】(1)根据最小正周期可求得;代入点,结合的范围可求得,从而得到函数解析式;(2)令,解出的范围即为所求的单调递增区间.【详解】(1)最小正周期 过点 ,解得:, 的解析式为:(2)由,得:,的单调递增区间为:,【点睛】本题考查根据三角函数性质求解函数解析式、正弦型函数单调区间的求解;关键是能够采用整体对应的方式来利用正弦函数的最值和单调区间求解正弦型函数的解析式和单调区间.18.已知数列是以为首项,为公比的等比数列(1)求数列的通项公式;(2)若,求数列的前项和【答案】(1) ;(2) 【解析】【分析】(1)根据等比数列通项公式可求得,进而得到;(2)利用(1)的结论可求得,从而得到的通项公式,采用裂项相消法可求得结果.【详解】(1)由等比数列通项公式得: (2)由(1)可得:【点睛】本题考查等比数列通项公式应用、裂项相消法求解数列的前项和的问题;关键是能够将数列的通项公式进行裂项,从而采用裂项相消法来进行求解,属于常考题型.19.某生产厂家生产一种产品的固定成本为4万元,并且每生产1百台产品需增加投入0.8万元.已知销售收入(万元)满足(其中是该产品的月产量,单位:百台),假定生产的产品都能卖掉,请完成下列问题:(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少万元?【答案】(1);(2)当月产量为8百台时,公司所获利润最大,最大利润为万元.【解析】【分析】(1) 由题可得成本函数G(x)4+,通过f(x)R(x)-G(x)得到解析式;(2) 当x10时,当0x10时,分别求解函数的最大值即可【详解】(1)由条件知成本函数G(x)4+可得 (2)当时,当时,的最大值为万元; 当时,万元, 综上所述,当月产量为8百台时,公司所获利润最大,最大利润为万元.【点睛】本题考查实际问题的应用,分段函数的应用,函数的最大值的求法,考查转化思想以及计算能力20.在凸四边形中,(1)若, , ,求的大小(2)若,且,求四边形的面积【答案】(1) ;(2) 【解析】【分析】(1)在中利用余弦定理可求得,从而可知,求得;在中利用正弦定理求得结果;(2)在中利用余弦定理和可表示出;在中利用余弦定理可得,从而构造出关于的方程,结合和为锐角可求得;根据化简求值可得到结果.【详解】(1)连接在中,由余弦定理得: ,则在中,由正弦定理得:,解得:(2)连接在中,由余弦定理得:又 在中,由余弦定理得:,即又 为锐角 ,则四边形面积:【点睛】本题考查解三角形的相关知识,涉及到正弦定理、余弦定理解三角形、三角形面积公式的应用;关键是能够利用余弦定理构造出关于角的正余弦值的方程,结合同角三角函数的平方关系构造方程可求得三角函数值;易错点是忽略角的范围,造成求解错误.21.为了解人们对某种食材营养价值的认识程度,某档健康养生电视节目组织名营养专家和名现场观众各组成一个评分小组,给食材的营养价值打分(十分制)下面是两个小组的打分数据:第一小组第二小组(1)求第一小组数据的中位数与平均数,用这两个数字特征中的哪一种来描述第一小组打分的情况更合适?说明你的理由(2)你能否判断第一小组与第二小组哪一个更像是由营养专家组成的吗?请比较数字特征并说明理由(3)节目组收集了烹饪该食材的加热时间:(单位:)与其营养成分保留百分比的有关数据:食材的加热时间(单位:)营养成分保留百分比在答题卡上画出散点图,求关于的线性回归方程(系数精确到),并说明回归方程中斜率的含义附注:参考数据:,.参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:,【答案】(1)中位数为,平均数为,中位数更适合描述第一小组打分情况;(2)由可知第二小组的打分人员更像是由营养专家组成;(3)散点图见解析;回归直线为:;的含义:该食材烹饪时间每加热多分钟,则其营养成分大约会减少【解析】【分析】(1)将第一小组打分按从小到大排序,根据中位数和平均数的计算方法求得中位数和平均数;由于存在极端数据,可知中位数更适合描述第一小组打分情况;(2)分别计算两组数据的方差,由可知第二小组打分相对集中,其更像是由营养专家组成;(3)由已知数据画出散点图;利用最小二乘法计算可得回归直线;根据的含义,可确定斜率的含义.【详解】(1)第一小组的打分从小到大可排序为:,则中位数为:平均数为:可发现第一小组中出现极端数据,会造成平均数偏低则由以上算得的两个数字特征可知,选择中位数更适合描述第一小组打分的情况(2)第一小组:平均数为方差:第二小组:平均数:方差:可知,第一小组的方差远大于第二小组的方差第二小组的打分相对集中,故第二小组的打分人员更像是由营养专家组成的(3)由已知数据,得散点图如下,且,则关于的线性回归方程为:回归方程中斜率的含义:该食材烹饪时间每加热多分钟,则其营养成分大约会减少【点睛】本题考查计算数据的中位数、平均数和方差、根据方差确定数据的波动性、回归直线的求解问题;考查学生对于统计中的公式的掌握情况,对于学生的计算和求解能力有一定要求,属于常考题型.22.设,已知函数,(1)若是的零点,求不等式的解集:(2)当时,求的取值范围【答案】(1) ; (2) 【解析】【分析】(1)利用可求得,将不等式化为;分别在和两种情况下解不等式可求得结果;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专利测试题附答案
- 中级消防设施操作员(维保)实操技能考试题库含答案(浓缩50题)
- 数字化供应链协同-第2篇-洞察与解读
- 2025年事业单位卫生类招聘考试预防医学专业知识试卷(答案详解)
- 2025年澳门特别行政区事业单位招聘考试综合类专业能力测试试卷(计算机类)真题模拟解析
- 2025年事业单位招聘考试综合类无领导小组讨论面试真题模拟试卷(创新能力)
- 2025年四川省事业单位招聘考试综合类专业能力测试试卷(化工类)真题模拟
- 2025福建泉州市丰泽区部分公办学校专项招聘编制内新任教师17人(二)模拟试卷及完整答案详解1套
- 智能安全监测系统-第5篇-洞察与解读
- 存储设备环境适应性评估-洞察与解读
- 2025年江西省高考化学试卷真题(含答案)
- 脊柱CT检查课件
- 租房物品转让协议书范本
- BIM技术在工程造价动态控制的创新应用
- 供配电站建设项目可行性研究报告
- 2025至2030年中国赛车主题公园行业发展前景预测及投资战略研究报告
- 企业节能减排知识培训课件
- 2025年无损检测员(一级)职业技能鉴定试卷
- 第8课《回忆鲁迅先生》课件+++2025-2026学年统编版语文八年级上册
- 产后脑梗护理
- 2025年成考专升本政治时政练习题及答案
评论
0/150
提交评论