




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2013中考你准备好了吗?,-备 战 2 0 1 3,2013年中考复习备考,第二轮 中考专题复习专题三 方案设计问题第一课时,知识网络梳理知识运用举例知识巩固训练,方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题。 随着新课程改革的不断深入,一些新颖、灵活、密切联系实际的方案设计问题正越来越受到中考命题人员的喜爱,这些问题主要考查学生动手操作能力和创新能力,这也是新课程所要求的核心内容之一。,一、中考专题诠释,方案设计型问题涉及生产生活的方方面面,如:测量、购物、生产配料、汽车调配、图形拼接等。所用到的数学知识有方程、不等式、函数、解直角三角形、概率和统计等知识。这类问题的应用性非常突出,题目一般较长,做题之前要认真读题,理解题意,选择和构造合适的数学模型,通过数学求解,最终解决问题。解答此类问题必须具有扎实的基础知识和灵活运用知识的能力,另外,解题时还要注重综合运用转化思想、数形结合的思想、方程函数思想及分类讨论等各种数学思想。,二、解题策略和解法精讲,考点一:设计测量方案问题这类问题主要包括物体高度的测量和地面宽度的测量。所用到的数学知识主要有相似、全等、三角形中位线、投影、解直角三角形等。,知识运用举例,例1 (2012河南)某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31,再沿DB方向前进16米到达E处,测得点A的仰角为45已知点C到大厦的距离BC=7米,ABD=90请根据以上数据求条幅的长度(结果保留整数参考数据:tan310.60,sin310.52,cos310.86),知识运用举例,点评:本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并求解,分析:设AB=x米根据AEB=45,ABE=90得到BE=AB=x,然后在RtABD中得到tan31= 求得x=24然后在RtABC中,利用勾股定理求得AC即可解答:解:设AB=x米AEB=45,ABE=90,BE=AB=x在RtABD中,tanD= ,即tan31= x= =24即AB24米 在RtABC中,AC=25即条幅的长度约为25米,考点二:设计搭配方案问题 这类问题不仅在中考中经常出现,大家在平时的练习中也会经常碰到。它一般给出两种元素,利用这两种元素搭配出不同的新事物,设计出方案,使获利最大或成本最低。解题时要根据题中蕴含的不等关系,列出不等式(组),通过不等式组的整数解来确定方案。例2 (2012内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:,造型花卉 甲 乙A 80 40B 50 70,(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?,考点:一元一次不等式组的应用。专题:应用题、图表型。分析:(1)设需要搭配x个A种造型,则需要搭配B种造型(60x)个,根据“4200盆甲种花卉”“3090盆乙种花卉”列不等式求解,取整数值即可(2)计算出每种方案的花费,然后即可判断出答案,解:(1)设需要搭配x个A种造型,则需要搭配B种造型(60x)个,则有 ,解得37x40,所以x=37或38或39或40第一方案:A种造型37个,B种造型23个;第二种方案:A种造型38个,B种造型22个;第三种方案:A种造型39个,B种造型21个第四种方案:A种造型40个,B种造型20个,知识运用举例,(2)分别计算三种方案的成本为:371000+231500=71500元,381000+221500=71000元,391000+211500=70500元,401000+201500=70000元通过比较可知第种方案成本最低答:选择第四种方案成本最低,最低位70000元,点评:此题考查了一元一次不等式组的应用,是一道实际问题,有一定的开放性,(1)根据图表信息,利用所用花卉数量不超过甲、乙两种花卉的最高数量列不等式组解答;(2)为最优化问题,根据(1)的结果直接计算即可,考点三:设计销售方案问题在商品买卖中,更多蕴含着数学的学问。在形形色色的让利、打折、买一赠一、摸奖等促销活动中,大家不能被表象所迷惑,需要理智的分析。通过计算不同的销售方案盈利情况,可以帮助我们明白更多的道理。近来还出现运用概率统计知识进行设计的问题。,例2 (2012广安)某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?,考点:一元一次不等式组的应用;二元一次方程组的应用。分析:(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得等量关系:买1块电子白板的钱=买3台笔记本电脑的钱+3000元,购买4块电子白板的费用+5台笔记本电脑的费用=80000元,由等量关系可得方程组,解方程组可得答案;(2)设购买电子白板a块,则购买笔记本电脑(396a)台,由题意得不等关系:购买笔记本电脑的台数购买电子白板数量的3倍;电子白板和笔记本电脑总费用2700000元,根据不等关系可得不等式组,解不等式组,求出整数解即可;(3)由于电子白板贵,故少买电子白板,多买电脑,根据(2)中的方案确定买的电脑数与电子白板数,再算出总费用,解:(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得: ,解得:99a101,答:购买1块电子白板需要15000元,一台笔记本电脑需要4000元(2)设购买电子白板a块,则购买笔记本电脑(396a)台,由题意得:,解得:99a101 ,a为正整数,a=99,100,101,则电脑依次买:297台,296台,295台因此该校有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块;方案三:购买笔记本电脑297台,则购买电子白板99块;,(3)解法一:购买笔记本电脑和电子白板的总费用为:方案一:2954000+10115000=2695000(元)方案二:2964000+10015000=2684000(元)方案三:2974000+9915000=2673000(元)因此,方案三最省钱,按这种方案共需费用2673000元解法二:设购买笔记本电脑数为z台,购买笔记本电脑和电子白板的总费用为W元,则W=4000z+15000(396z)=11000z+5940000,W随z的增大而减小,当z=297时,W有最小值=2673000(元)因此,当购买笔记本电脑297台、购买电子白板99块时,最省钱,这时共需费用2673000元点评:此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组,1.设计图形类的问题往往与几何图形的分割与拼接有关,有时是根据面积相等来分割,有时是根据轴对称或中心对称来分割,做此类题一般要用尺规画图.2.设计测量方案类的问题所设计的知识有解直角三角形和相似两种,测量的对象有河宽和物高等(注意课本习题和数学活动中的相关方法),一般要画出示意图,并对测量数据做好标注,有时还要求写出算法。3.此类题目都属于基础题,一般难度不大,注意审题和画图、表达规范即可。,方法小结:,1.(2012本溪)下列各网格中的图形是用其图形中的一部分平移得到的是() A B C D 考点:利用平移设计图案专题:探究型分析:根据平移及旋转的性质对四个选项进行逐一分析即可解答:解:A、是利用图形的旋转得到的,故本选项错误;B、是利用图形的旋转和平移得到的,故本选项错误;C、是利用图形的平移得到的,故本选项正确;D、是利用图形的旋转得到的,故本选项错误故选C点评:本题考查的是利用平移设计图案,熟知图形经过平移后所得图形与原图形全等是解答此题的关键,中考演练:,2.(2012丽水)在方格纸中,选择标有序号中的一个小正方形涂黑,与图中阴影部分构成中心对称图形该小正方形的序号是()ABCD,考点:利用旋转设计图案分析:通过观察发现,当涂黑时,所形成的图形关于点A中心对称解答:解:如图,把标有序号的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形故选B点评:本题考查了利用旋转设计图案和中心对称图形的定义,要知道,一个图形绕端点旋转180所形成的图形叫中心对称图形,3.(2012丹东)南中国海是中国固有领海,我渔政船经常在此海域执勤巡察一天我渔政船停在小岛A北偏西37方向的B处,观察A岛周边海域据测算,渔政船距A岛的距离AB长为10海里此时位于A岛正西方向C处的我渔船遭到某国军舰的袭扰,船长发现在其北偏东50的方向上有我方渔政船,便发出紧急求救信号渔政船接警后,立即沿BC航线以每小时30海里的速度前往救助,问渔政船大约需多少分钟能到达渔船所在的C处?(参考数据:sin370.60,cos370.80,sin500.77,cos500.64,sin530.80,cos530.60,sin400.64,cos400.77),考点:解直角三角形的应用-方向角问题分析:首先B点作BDAC,垂足为D,根据题意,得:ABD=BAM=37,CBD=BCN=50,然后分别在RtABD与RtCBD中,利用余弦函数求得BD与BC的长,继而求得答案解:过B点作BDAC,垂足为D根据题意,得:ABD=BAM=37,CBD=BCN=50,在RtABD中,cosABD= ,cos37= 0.80,BD100.8=8(海里),在RtCBD中,cosCBD= ,cos50= 0.64,BC80.64=12.5(海里),12.530= (小时), 60=25(分钟)答:渔政船约25分钟到达渔船所在的C处点评:此题考查了方向角问题此题难度适中,解题的关键是利用方向角构造直角三角形,然后解直角三角形,注意数形结合思想的应用,4、(2012河池)随着人们环保意识的不断增强,我市家庭电动自行车的拥有量逐年增加据统计,某小区2009年底拥有家庭电动自行车125辆,2011年底家庭电动自行车的拥有量达到180辆(1)若该小区2009年底到2012年底家庭电动自行车拥有量的年平均增长率相同,则该小区到2012年底电动自行车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1000元/个,露天车位200元/个考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案,考点:一元二次方程的应用;一元一次不等式组的应用。分析:(1)设年平均增长率是x,根据某小区2009年底拥有家庭电动自行车125辆,2011年底家庭电动自行车的拥有量达到180辆,可求出增长率,进而可求出到2012年底家庭电动车将达到多少辆(2)设建x个室内车位,根据投资钱数可表示出露天车位,根据计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的3倍,可列出不等式组求解,进而可求出方案情况,解:(1)设家庭电动自行车拥有量的年平均增长率为x,则125(1+x)=180,解得x=0.2=25%,x=2.2(不合题意,舍去)180(1+20%)=216(辆),答:该小区到2012年底家庭电动自行车将达到216辆;(2)设该小区可建室内车位a个,露天车位b个,则,由得b=1505a,代入得20a ,a是正整数,a=20或21,当a=20时b=50,当a=21时b=45方案一:建室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个点评:本题考查了一元二次方程的应用,关键是先求出增长率,再求出2012年的家庭电动自行车量,然后根据室内车位和露天车位的数量关系列出不等式组求解,(2012铁岭)为奖励在文艺汇演中表现突出的同学,班主任派生活委员小亮到文具店为获奖同学购买奖品小亮发现,如果买1个笔记本和3支钢笔,则需要18元;如果买2个笔记本和5支钢笔,则需要31元(1)求购买每个笔记本和每支钢笔各多少元?(2)班主任给小亮的班费是100元,需要奖励的同学是24名(每人奖励一件奖品),若购买的钢笔数不少于笔记本数,求小亮有哪几种购买方案?,考点:一元一次不等式组的应用;二元一次方程组的应用。分析:(1)每个笔记本x元,每支钢笔y元,根据题意列出方程组求解即可;(2)设购买笔记本m个,则购买钢笔(24m)个利用总费用不超过100元和钢笔数不少于笔记本数列出不等式组求得m的取值范围后即可确定方案,解:(1)设每个笔记本x元,每支钢笔y元依题意得:解得:答:设每个笔记本3元,每支钢笔5元(2)设购买笔记本m个,则购买钢笔(24m)个依题意得:解得:12m10m取正整数m=10或11或12有三种购买方案:购买笔记本10个,则购买钢笔14个购买笔记本11个,则购买钢笔13个购买笔记本12个,则购买钢笔12个点评:本题考查了一元一次不等式的应用及二元一次方程组的应用,解题的关键是仔细的分析题意并找到等量关系列方程或不等关系列不等式,5、(2012朝阳)为支持抗震救灾,我市A、B两地分别有赈灾物资100吨和180吨,需全部运往重灾区C、D两县,根据灾区的情况,这批赈灾物资运往C县的数量比运往D县的数量的2倍少80吨(1)求这批赈灾物资运往C、D两县的数量各是多少吨?(2)设A地运往C县的赈灾物资数量为x吨(x为整数)若要B地运往C县的赈灾物资数量大于A地运往D县赈灾物资数量的2倍,且要求B地运往D县的赈灾物资数量不超过63吨,则A、B两地的赈灾物资运往C、D两县的方案有几种?,考点:一元一次不等式组的应用;二元一次方程组的应用。专题:调配问题。分析:(1)设运往C县的物资是a吨,D县的物资是b吨,然后根据运往两地的物资总量列出一个方程,再根据运往C、D两县的数量关系列出一个方程,然后联立组成方程组求解即可;(2)根据A地运往C县的赈灾物资数量为x吨,表示出B地运往C县的物资
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 逻辑思维训练课程教案:逻辑推理与论证方法
- 长方体结构认识与性质学习教案
- 电力系统运行与维护习题集
- 音乐分析考试试题及答案
- 医院停水考试试题及答案
- 医院库房考试试题及答案
- 六一俱乐部活动方案
- 六一光影活动方案
- 六一创意夜晚活动方案
- 六一宠物活动策划方案
- 军营超市环境卫生管理方案
- 快乐海豚课件教学课件
- 国开《农村社会学》形考作业1-4参考答案
- 电子烟质量管理手册
- 城市数字底座CIM数字城市发展方向与技术
- 财政学学习通题库及答案
- 2023-2024学年全国初二下历史人教版期末试卷(含答案解析)
- 形势与政策智慧树知到答案2024年西北师范大学
- 2024-2030年中国射击场行业市场发展趋势与前景展望战略分析报告
- 施工现场建筑垃圾减量化专项方案
- 高三数学一轮复习题型与战法精准训练(新高考专用)7.2.2点线面的位置关系(针对练习)(原卷版+解析)
评论
0/150
提交评论