



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆周角的课例分析鄯善县第二中学 严科教材的地位和作用: 本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角的性质进行探索,圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用同时,圆周角性质也是说明线段相等,角相等的重要依据之一学情分析: 九年级学生有较强的自我发展的意识,较感兴趣于有“挑战性”的任务,也具备一定的逻辑推理能力。所以在教学中应建立数学与生活的联系,创设一系列有启发性、挑战性的问题情景激发学生学习的兴趣,引导学生用数学的眼光思考问题、发现规律、验证猜想。教法:问题式教学法,启发式教学法,探究式教学法,情境式教学法,互动式教学法等多种教学方法融为一体。学法:学生采用动手实践,自主探究,合作交流的学习方法进行学习。在观察、实践、问题转化等数学活动中充分体验探索的快乐,发现新知,发展能力。教学目标:1.知识与技能: (1)通过本节的教学使学生理解圆周角的概念,掌握圆周角的性质; (2)准确地运用圆周角性质进行简单的证明计算。2.过程与方法:引导学生能主动地通过:实验、观察、猜想、验证“圆周角与圆心角的关系”,培养学生的合情推理能力、实践能力与创新精神,从而提高数学素养。3.情感、态度与价值观:创设生活情景激发学生对数学的“好奇心、求知欲”;营造“民主、和谐”的课堂氛围,让学生在愉快的学习中不断获得成功的体验,同时培养学生以严谨求实的态度思考数学。重点难点:1. 重点:经历探索“圆周角与圆心角的关系”的过程,掌握圆周角定理。2. 难点:了解圆周角的分类、用化归思想,合情推理验证“圆周角与圆心角的关系”。教学准备:教师:几何画板课件、圆规、三角板学生:圆形硬纸片(每位学生若干张)教学过程:一、创设情境,引入新课(1)复习圆心角的概念。(2)用几何画板在圆形舞台上画一圆心角AOB,移动顶点O到圆周,形成另一个角,这个角的顶点、两边与圆有什么关系?类比圆心角的定义给这个角命名。教师结合示意图和圆心角的定义,引导学生得出圆周角的定义。由学生口述,教师板书:圆周角:顶点在圆上,且两边都与圆相交的角。强调:定义中的两个条件缺一不可。利用几何画板演示,让学生辨析圆周角。(3)问题:足球训练场上教练球门前划了一个圆圈进行无人防守的射门训练如图1,甲、乙两名运动员分别在c、d两地,他们争论不休,都说在自己的位置射门好。如果你是教练,评一评他们的说法。 图二、师生互动、合作探究探究一:同弧所对的圆周角的大小有什么关系?(1)教师引导学生把实际问题抽象成数学问题:“研究同弧所对的圆周角的大小关系问题”,导入新课。(2)引导学生通过画图测量,发现:C、D的度数相等。并进一步用几何画板测量多画几个弧AB所对的圆周角,并测量出各个角的度数,进一步验证“同弧所对的圆周角的大小相等”。()教师引导,问题转化为研究“同弧所对的圆周角与圆心角的关系”。探究二:同弧所对的圆周角与圆心角的大小有什么关系?()通过几何画板进行演示,引导学生注意弧所对的圆周角的三种情况,并用测量圆心角与圆周角度数的方法来初步猜测同弧所对的圆周角是圆心角度数的一半这一命题。 学生动手实践:在圆形硬纸片上任取一段弧,画出该弧所对的圆心角和任意一个圆周角。并根据所画的图形,探索说明“该弧所对的圆周角等于圆心角的一半”成立的理由。分组讨论设计说明:本活动的设计让学生有自主探索、合作交流的时间和空间。学生在动手实践和充分的独立思考的基础上如有遇到个人难以独立解决的问题可以小组合作解决,在这个过程中教师深入课堂对学生适时的点拨、指导。()充分的活动交流后,教师挑选有代表性的几个小组派代表在黑板上展示图片、并说理、验证。第一类:圆心在圆周角一边上第二类:圆心在圆周角内部第三类:圆心在圆周角外部第一类比较容易,圆心在圆周角上第二类、第三类比较难,教师引导:由圆的轴对称性和圆周角的分类标准联想到把硬纸片对折、发现过圆周角的顶点C作辅助线“直径”,可以把第二、第三类情况转化为第一类来验证。第二类:圆心在圆周角内部(C=AOBACD+BCD=(AOD+BOD )ACD=AOD、BCD=BOD)第三类:圆心在圆周角外部(C=AOBACD-BCD=(AODBOD )ACD=AOD、BCD=BOD)()教师精讲:猜想成立,就可以把情景中研究“同弧所对的圆周角的大小问题”化归为研究“同弧所对的圆周角与圆心角的关系问题”,教师用几何画板演示二、三类情况,加深对所加辅助线和第二、三类情况划归为第一类情况的认识,一目了然。学生归纳严格的推理过程。()由学生归纳发现的规律,教师板书“同弧所对的圆周角度数并且它的度数恰好等于这条弧所对的圆心角度数的一半。”说明:“同弧”说明是“同一个圆”; “等弧”说明是“在同圆或等圆中”()引导: “同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)三、巩固提
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电力系统自动化工程师模拟考试题库及答案
- 2025年医疗器械维修工程师专业技能考试预测题集
- 班婕妤团扇歌课件
- 南充科技职业学院《审计工作底稿编制》2024-2025学年第一学期期末试卷
- 广东理工学院《数字化测图》2024-2025学年第一学期期末试卷
- 广州番禺职业技术学院《建筑工程概预算》2024-2025学年第一学期期末试卷
- 2025年初入医疗行业必-备面试技巧与模拟题答案详解
- 安徽交通职业技术学院《资源环境遥感》2024-2025学年第一学期期末试卷
- 2025年面试模拟题集涵盖多个行业与职位类型答案详解
- 2025年灌区管理工初级职位面试实战模拟题集
- 检修安全监护管理制度
- 产科工作管理制度
- 初中历史教师业务考试试题及答案
- 导尿管相关尿路感染预防与控制试题(附答案)
- 中医烧伤课件
- 2025-2030中国水下混凝土行业市场发展趋势与前景展望战略研究报告
- GB/T 30134-2025冷库管理规范
- 2025年心理咨询师基础理论知识测试卷:心理咨询心理学理论体系试题
- 急诊患者安全管理
- 2025标准劳动合同范本专业版(合同样本)
- 危急值报告制度培训考核试题
评论
0/150
提交评论