



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
万变不离其宗!复习就是要理清思路查漏查缺然后对症下药。短短一个月后,就要考试了,面对复习不能手足无措,要有目的地复习。主要以教材为主,看教材时,先把教材看完一节就做一节的练习,看完一章后,通过看小结对整一章的内容进行总复习。掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容,大胆放弃老师不做要求的内容。复习自然离不开大量的练习,熟悉公式然后才能熟练任用。结合课后习题要清楚每一道题用了哪些公式。没有用到公式的要死抓定义定理!一.函数与极限 二.导数与微分 三.微分中值定理与导数的应用 四.不定积分 五.定积分 六定积分的应用 浏览目录了解真正不熟悉的章节然后有针对的复习。一函数与极限熟悉 差集 对偶律(最好掌握证明过程) 邻域(去心邻域)函数有界性的表示方法 数列极限与函数极限的区别 收敛与函数存在极限等价 无穷小与无穷大的转换 夹逼准则(重新推导证明过程) 熟练运用两个重要极限 第二准则 会运用等价无穷小快速化简计算 了解间断点的分类 零点定理本章公式:两个重要极限:常用的8个等价无穷小公式: 当x0时, sinxx tanxx arcsinxx arctanxx 1-cosx1/2*(x2)(ex)-1xln(1+x)x(1+x)1/n-1(1/n)*x二.导数与微分熟悉函数的可导性与连续性的关系 求高阶导数会运用两边同取对数 隐函数的显化 会求由参数方程确定的函数的导数 三.微分中值定理与导数的应用:洛必达法则:利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: 在着手求极限以前,首先要检查是否满足 或 型,否则滥用洛必达法则会出错.当不存在时(不包括情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限 . 洛必达法则可连续多次使用,直到求出极限为止. 洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等.曲线的凹凸性与拐点:注意:首先看定义域然后判断函数的单调区间 求极值和最值 利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号) 四.不定积分:(要求:将例题重新做一遍) 对原函数的理解原函数与不定积分1 基本积分表基本积分表(共24个基本积分公式) 不定积分的性质2 第一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 求职人员面试题及答案
- 航空航天复合材料 课件 知识点2 纳米复合材料
- 新疆村干部考试试题及答案
- 社会幼儿面试题及答案
- 中国烟草培训
- 2025年中国抛光块行业市场全景分析及前景机遇研判报告
- 醉酒窒息死亡病例分析
- 中班健康领域:会变暖的衣服
- 综合格斗培训
- 肿瘤登记质量控制
- 2023年国网山西省电力公司提前批招聘考试真题
- 《珍爱生命拒绝毒品》主题班会课件
- 墙布窗帘购销合同协议书
- 计算机网络的拓扑结构 教学课件
- 华为质量回溯(根因分析与纠正预防措施)模板
- 山东省烟台市牟平区(五四制)2023-2024学年八年级下学期期末语文试题(原卷版)
- 广东省广州市荔湾区统考2023-2024学年英语八下期末统考试题含答案
- 综合英语4智慧树知到答案2024年江西师范大学
- 《山区公路桥梁典型病害手册(试行)》
- 第四单元 神州音韵(四)-在那遥远的地方 教案 -2023-2024学年人教版初中音乐八年级下册
- 高三一轮复习作文主题训练:志向多样人生多彩
评论
0/150
提交评论