



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.1.1平均变化率二、教学重点、难点 重点:平均变化率的实际意义和数学意义 难点:平均变化率的实际意义和数学意义三、教学过程一、问题情境1、情境:现有南京市某年3月和4月某天日最高气温记载.时间3月18日4月18日4月20日日最高气温3.518.633.4观察:3月18日到4月18日与4月18日到4月20日的温度变化,用曲线图表示为:(理解图中A、B、C点的坐标的含义) t(d)2030342102030A (1, 3.5)B (32, 18.6)0C (34, 33.4)T ()210问题1:“气温陡增”是一句生活用语,它的数学意义是什么?(形与数两方面)问题2:如何量化(数学化)曲线上升的陡峭程度?二、建构数学1通过比较气温在区间1,32上的变化率05与气温32,34上的变化率74,感知曲线陡峭程度的量化。2.一般地,给出函数f(x)在区间x1,x2上的平均变化率。3回到气温曲线图中,从数和形两方面对平均变化率进行意义建构。4。平均变化率量化一段曲线的陡峭程度是“粗糙不精确的”,但应注意当x2x1很小时,这种量化便有“粗糙”逼近“精确”。三、数学运用例1、 在经营某商品中,甲挣到10万元,乙挣到2万元,如何比较和评价甲,乙两人的经营成果?变:在经营某商品中,甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲,乙两人的经营成果?小结:仅考虑一个变量的变化是不行的。例2、水经过虹吸管从容器甲中流向容器乙,t s后容器甲中水的体积 (单位:),计算第一个10s内V的平均变化率。例3、已知函数,分别计算在下列区间上的平均变化率: (1)1,3;(2)1,2;(3)1,1.1;(4)1,1.001。 五、练习1、某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率。T(月)W(kg)639123.56.58.6112、已知函数f(x)=2x+1,g(x)=2x,分别计算在区间-3,-1,0,5上f(x)及g(x)的平均变化率。 (发现:y=kx+b在区间m,n上的平均变化率有什么特点?)瞬时变化率与导数教学重点:瞬时速度、瞬时变化率的概念、导数的概念; 教学难点:导数的概念教学过程:一创设情景(一)平均变化率(二)探究:在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)= -4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?思考计算:和的平均速度在这段时间里,;在这段时间里,探究:计算运动员在这段时间里的平均速度,并思考以下问题:运动员在这段时间内使静止的吗?你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,hto 所以,虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态二新课讲授1瞬时速度我们把物体在某一时刻的速度称为瞬时速度。运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,时的瞬时速度是多少?考察附近的情况:思考:当趋近于0时,平均速度有什么样的变化趋势?从物理的角度看,时间间隔无限变小时,平均速度就无限趋近于此时的瞬时速度,因此,运动员在时的瞬时速度是为了表述方便,我们用表示“当,趋近于0时,平均速度趋近于定值”2 导数的概念(一)则函数y=f(x)在x=x0处的瞬时变化率是:我们称它为函数在处的导数,记作或,即 说明:(1)导数即为函数y=f(x)在x=x0处的瞬时变化率 (2),当时,所以(二)导函数:由函数f(x)在x=x0处求导数的过程可以看到,当时, 是一个确定的数,那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.记作:或,即: 注:在不致发生混淆时,导函数也简称导数(三)函数在点处的导数、导函数、导数 之间的区别与联系。1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。2)函数的导数,是指某一区间内任意点x而言的, 就是函数f(x)的导函数 3)函数在点处的导数就是导函数在处的函数值,这也是 求函数在点处的导数的方法之一。三典例分析例1(1)求函数y=3x2在x=1处的导数.(2)求函数f(x)=在附近的平均变化率,并求出在该点处的导数 例2将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第时,原油的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司积分等级管理制度
- 浙江省杭州市S9联盟2024-2025学年高二下学期期中联考语文试卷(含答案)
- 管道防腐交底
- 河南省信阳市2023−2024学年高二下册期末教学质量检测数学试卷附解析
- 河南省南阳市方城县2024-2025学年高一下册第二次月考模拟演练数学试卷
- 安徽省六安市2025届高三适应性考试数学试卷附解析
- 2025届河南省焦作市焦作中考二模数学试卷
- 身份验证安全专家基础知识点归纳
- 沈阳市医疗卫生系统国内医学院校招聘笔试真题2024
- 河北省烟草专卖局(公司)考试题库2024
- 2023年10月自考00539中国古代文学史二试题及答案含评分标准
- 反应釜课程设计
- 环境试验项目表
- 标识标牌制作服务方案(投标方案)
- 抖音企业唯一授权书范本
- 高中化学课程标准解读课件
- 混凝土及砌体结构房屋设计-湖南大学中国大学mooc课后章节答案期末考试题库2023年
- 培智3年级《认识人民币》
- 霍邱县2022-2023学年数学三下期末教学质量检测试题含解析
- 汽车用TPV类材料技术要求
- 人教小学数学五年级下册综合与实践《怎样通知最快》示范公开课教学课件
评论
0/150
提交评论