




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数重难点专题训练卷(1) 班级 姓名 1、 选择题1、已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(1,0),下列结论:abc0;b24ac=0;a2;4a2b+c0其中正确结论的个数是() A 1 B 2 C 3 D 42、已知抛物线y=x2+x+6与x轴交于点A,点B,与y轴交于点C若D为AB的中点,则CD的长为()21教育网ABCD3、如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(,m)(m0),则有()【来源:21cnj*y.co*m】 A a=b+2kBa=b2kCkb0 Dak04、函数y=与y=kx2+k(k0)在同一直角坐标系中的图象可能是()ABCD5、如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c0,ab,4acb20;其中正确的结论有()A 1个B2个C3个D4个6、如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:b24ac;bc0;2a+b=0;a+b+c=0,其中正确结论是( )ABCD7、对于两个不相等的实数a、b,我们规定符号Maxa,b表示a、b中的较大值,如:Max2,4=4,按照这个规定,方程的解为( ). A. B. C. D.8、若二次函数y=ax2+bx+c(a0)的图象与x轴有两个交点,坐标分别为(x1,0)、(x2,0),且x1x2,图象上有一点M(x0,y0),在x轴下方,则下列判断正确的是() A a(x0x1)(x0x2)0 B a0 C b24ac0 D x1x0x2二、填空题9、关于x的一元二次方程kx2x+1=0有两个不相等的实数根,则k的取值范围是 10、如图,是抛物线y=ax2+bx+c(a0)图象的一部分已知抛物线的对称轴为x=2,与x轴的一个交点是(1,0)有下列结论:abc0;4a2b+c0;4a+b=0;抛物线与x轴的另一个交点是(5,0);点(3,y1),(6,y2)都在抛物线上,则有y1y2其中正确的是 (填序号即可)三、解答题11、如图,在平面直角坐标系中,顶点为A(1,1)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C在点D的左侧)【版权所有:21教育】(1)求抛物线的解析式;(2)求点O到直线AB的距离;(3)点M在第二象限内的抛物线上,点N在x轴上,且MND=OAB,当DMN与OAB相似时,请你直接写出点M的坐标12、如图,抛物线y=ax2+bx+c(a0)的图象过点M(2,),顶点坐标为N(1,),且与x轴交于A、B两点,与y轴交于C点(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由13、如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5,且=,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=x2+x+c经过点E,且与AB边相交于点F(1)求证:ABDODE;(2)若M是BE的中点,连接MF,求证:MFBD;(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PDDQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由14、已知二次函数y=ax2+bx3a经过点A(1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D21世纪*教育网(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由15、已知:抛物线l1:y=x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,)(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MNy轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值www-2-1-cnjy-com16、如图,抛物线与轴交于点A,与轴交于点B,C两点(点C在轴正半轴上),ABC为等腰直角三角形,且面积为4. 现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与轴的另一交点为E,其顶点为F,对称轴与轴的交点为H.21*cnjy*com(1)求,的值;(2)连结OF,试判断OEF是否为等腰三角形,并说明理由;(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与轴相交于点P,是否存在这样的点Q,使以点P,Q,E为顶点的三角形与POE全等?若存在,求出点Q的坐标;若不存在,请说明理由.17、如图,直线y=x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点21教育名师原创作品(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当BEC面积最大时,请求出点E的坐标和BEC面积的最大值?【来源:21世纪教育网】(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由18、如图1,已知二次函数的图象与x轴交于A、B两点(B在A的左侧),顶点为C,点D(1,m)在此二次函数图象的对称轴上,过点D作y轴的垂线,交对称轴右侧的抛物线于E点(1)求此二次函数的解析式和点C的坐标;(2)当点D的坐标为(1,1)时,连接BD、BE求证:BE平分ABD;(3)点G在抛物线的对称轴上且位于第一象限,若以A、C、G为顶点的三角形与以G、D、E为顶点的三角形相似,求点E的横坐标二次函数重难点专题训练卷答案详解一、选择题故选:B2、已知抛物线y=x2+x+6与x轴交于点A,点B,与y轴交于点C若D为AB的中点,则CD的长为()21cnjycomABCD【解析】选D.令y=0,则x2+x+6=0,解得:x1=12,x2=3A、B两点坐标分别为(12,0)(3,0)D为AB的中点,D(4.5,0),OD=4.5,当x=0时,y=6,OC=6,CD=故选:D3、如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(,m)(m0),则有()2-1-c-n-j-yA a=b+2kBa=b2kCkb0 Dak0【解析】选D.y=ax2+bx图象的顶点(,m),=,即b=a,m=,顶点(,),把x=,y=代入反比例解析式得:k=,由图象知:抛物线的开口向下,a0,ak0,故选D4、函数y=与y=kx2+k(k0)在同一直角坐标系中的图象可能是()ABCD【解析】选B.由解析式y=kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k0,则k0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k0,则k0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k0,则k0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k0,则k0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误故选:B5、如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c0,ab,4acb20;其中正确的结论有()21*cnjy*comA 1个B2个C3个D4个【解析】选C.二次函数y=ax2+bx+c图象经过原点,c=0,abc=0正确;x=1时,y0,a+b+c0,不正确;抛物线开口向下,a0,抛物线的对称轴是x=,b0,b=3a,又a0,b0,ab,正确;二次函数y=ax2+bx+c图象与x轴有两个交点,0,b24ac0,4acb20,正确;综上,可得正确结论有3个:故选:C6、如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:b24ac;bc0;2a+b=0;a+b+c=0,其中正确结论是( )ABCD【解析】选B.图象与x轴有两个交点,则方程有两个不相等的实数根,b24ac0,b24ac,正确;因为开口向下,故a0,有0,则b0,又c0,故bc0,错误;由对称轴x=1,得2a+b=0,正确;当x=1时,a+b+c0,错误;故正确故选:B7、对于两个不相等的实数a、b,我们规定符号Maxa,b表示a、b中的较大值,如:Max2,4=4,按照这个规定,方程的解为( ). A. B. C. D.【解析】选D.当xx,即x0时,所求方程变形得:x=,去分母得:x2+2x+1=0,即x=1;当xx,即x0时,所求方程变形得:x=,即x22x=1,解得:x=1+或x=1(舍去),经检验x=1与x=1+都为分式方程的解故选D8、若二次函数y=ax2+bx+c(a0)的图象与x轴有两个交点,坐标分别为(x1,0)、(x2,0),且x1x2,图象上有一点M(x0,y0),在x轴下方,则下列判断正确的是() A a(x0x1)(x0x2)0 B a0 C b24ac0 D x1x0x2【解析】选A.A、当a0时,点M(x0,y0),在x轴下方,x1x0x2,x0x10,x0x20,a(x0x1)(x0x2)0;当a0时,若点M在对称轴的左侧,则x0x1x2,x0x10,x0x20,a(x0x1)(x0x2)0;若点M在对称轴的右侧,则x1x2x0,x0x10,x0x20,a(x0x1)(x0x2)0;综上所述,a(x0x1)(x0x2)0,故本选项正确;B、a的符号不能确定,故本选项错误;C、函数图象与x轴有两个交点,0,故本选项错误;D、x1、x0、x2的大小无法确定,故本选项错误故选A二、填空题9、关于x的一元二次方程kx2x+1=0有两个不相等的实数根,则k的取值范围是k且k0【解析】kx2x+1=0有两个不相等的实数根,=14k0,且k0,解得,k且k0;故答案是:k且k010、如图,是抛物线y=ax2+bx+c(a0)图象的一部分已知抛物线的对称轴为x=2,与x轴的一个交点是(1,0)有下列结论:abc0;4a2b+c0;4a+b=0;抛物线与x轴的另一个交点是(5,0);点(3,y1),(6,y2)都在抛物线上,则有y1y2其中正确的是(填序号即可)【解析】抛物线的对称轴为x=2,=2,b=4a,4a+b=0,故正确;抛物线开口向上,a0,b0;由图象知c0,abc0,故正确;由抛物线的单调性知:当x=2时,y0,即4a2b+c0,故错误;=2,而对称轴方程为 x=2,抛物线与x轴的另一个交点是(5,0),故正确当时,m=7,而67,点(6,y2)在点(7,y3)的下方,由抛物线的对称性及单调性知:y1y2,故错误;故答案为:三、解答题11、如图,在平面直角坐标系中,顶点为A(1,1)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C在点D的左侧)(1)求抛物线的解析式;(2)求点O到直线AB的距离;(3)点M在第二象限内的抛物线上,点N在x轴上,且MND=OAB,当DMN与OAB相似时,请你直接写出点M的坐标【解析】(1)设抛物线的解析式为y=a(x1)21,将B点坐标代入函数解析式,得(51)2a1=3,解得a=故抛物线的解析式为y=(x1)21;(2)由勾股定理,得OA2=11+12=2,OB2=52+32=34,AB2=(51)2+(3+1)2=32,OA2+AB2=OB2,OAB=90,O到直线AB的距离是OA=;(3)设M(a,b),N(a,0)当y=0时,(x1)21=0,解得x1=3,x2=1,D(3,0),DN=3a当MNDOAB时,=,即=,化简,得4b=a3 M在抛物线上,得b=(a1)21 联立,得,解得a1=3(不符合题意,舍),a2=2,b=,M1(2,),当MNDBAO时,=,即=,化简,得b=124a ,联立,得,解得a1=3(不符合题意,舍),a2=17,b=124(17)=80,M2(17,80)综上所述:当DMN与OAB相似时,点M的坐标(2,),(17,80)12、如图,抛物线y=ax2+bx+c(a0)的图象过点M(2,),顶点坐标为N(1,),且与x轴交于A、B两点,与y轴交于C点(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由【解析】(1)由抛物线顶点坐标为N(1,),可设其解析式为y=a(x+1)2+,将M(2,)代入,得=a(2+1)2+,解得a=,故所求抛物线的解析式为y=x2x+;(2)y=x2x+,x=0时,y=,C(0,)y=0时,x2x+=0,解得x=1或x=3,A(1,0),B(3,0),BC=2设P(1,m),显然PBPC,所以当CP=CB时,有CP=2,解得m=;当BP=BC时,有BP=2,解得m=2综上,当PBC为等腰三角形时,点P的坐标为(1,+),(1,),(1,2),(1,2);(3)由(2)知BC=2,AC=2,AB=4,所以BC2+AC2=AB2,即BCAC连结BC并延长至B,使BC=BC,连结BM,交直线AC于点Q,B、B关于直线AC对称,QB=QB,QB+QM=QB+QM=MB,又BM=2,所以此时QBM的周长最小由B(3,0),C(0,),易得B(3,2)设直线MB的解析式为y=kx+n,将M(2,),B(3,2)代入,得,解得,即直线MB的解析式为y=x+同理可求得直线AC的解析式为y=x+由,解得,即Q(,)所以在直线AC上存在一点Q(,),使QBM的周长最小13、如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5,且=,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=x2+x+c经过点E,且与AB边相交于点F(1)求证:ABDODE;(2)若M是BE的中点,连接MF,求证:MFBD;(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PDDQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由【解析】(1)证明:四边形ABCO为矩形,且由折叠的性质可知BCEBDE,BDE=BCE=90,BAD=90,EDO+BDA=BDA+DAB=90,EDO=DBA,且EOD=BAD=90,ABDODE;(2)证明:=,设OD=4x,OE=3x,则DE=5x,CE=DE=5x,AB=OC=CE+OE=8x,又ABDODE,=,DA=6x,BC=OA=10x,在RtBCE中,由勾股定理可得BE2=BC2+CE2,即(5)2=(10x)2+(5x)2,解得x=1,21世纪教育网版权所有OE=3,OD=4,DA=6,AB=8,OA=10,抛物线解析式为y=x2+x+3,当x=10时,代入可得y=,AF=,BF=ABAF=8=,在RtAFD中,由勾股定理可得DF=,BF=DF,又M为RtBDE斜边上的中点,MD=MB,MF为线段BD的垂直平分线,MFBD;(3)由(2)可知抛物线解析式为y=x2+x+3,设抛物线与x轴的两个交点为M、N,令y=0,可得0=x2+x+3,解得x=4或x=12,M(4,0),N(12,0),过D作DGBC于点G,如图所示,则DG=DM=DN=8,点M、N即为满足条件的Q点,存在满足条件的Q点,其坐标为(4,0)或(12,0)14、已知二次函数y=ax2+bx3a经过点A(1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由【解析】(1)二次函数y=ax2+bx3a经过点A(1,0)、C(0,3),根据题意,得,解得,抛物线的解析式为y=x2+2x+3(2)由y=x2+2x+3得,D点坐标为(1,4),CD=,BC=3,BD=2,CD2+BC2=()2+(3)2=20,BD2=(2)2=20,CD2+BC2=BD2,BCD是直角三角形;(3)存在CD2+BC2=()2+(3)2=20,BD2=(2)2=y=x2+2x+3对称轴为直线x=1若以CD为底边,则PD=PC,设P点坐标为(x,y),根据两点间距离公式,得x2+(3y)2=(x1)2+(4y)2,即y=4x又P点(x,y)在抛物线上,4x=x2+2x+3,即x23x+1=0,解得x1=,x2=1,应舍去,x=,y=4x=,即点P坐标为(,)若以CD为一腰,点P在对称轴右侧的抛物线上,由抛物线对称性知,点P与点C关于直线x=1对称,此时点P坐标为(2,3)符合条件的点P坐标为(,)或(2,3)15、已知:抛物线l1:y=x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,)【出处:21教育名师】(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MNy轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值【解析】(1)抛物线l1:y=x2+bx+3的对称轴为x=1,=1,解得b=2,抛物线l1的解析式为y=x2+2x+3,令y=0,可得x2+2x+3=0,解得x=1或x=3,A点坐标为(1,0),抛物线l2经过点A、E两点,可设抛物线l2解析式为y=a(x+1)(x5),又抛物线l2交y轴于点D(0,),=5a,解得a=,y=(x+1)(x5)=x22x,抛物线l2的函数表达式为y=x22x;(2)设P点坐标为(1,y),由(1)可得C点坐标为(0,3),PC2=12+(y3)2=y26y+10,PA2=1(1)2+y2=y2+4,PC=PA,y26y+10=y2+4,解得y=1,P点坐标为(1,1);(3)由题意可设M(x,x22x),MNy轴,N(x,x2+2x+3),x22x令x2+2x+3=x22x,可解得x=1或x=,当1x时,MN=(x2+2x+3)(x22x)=x2+4x+=(x)2+,显然1,当x=时,MN有最大值;当x5时,MN=(x22x)(x2+2x+3)=x24x=(x)2,显然当x时,MN随x的增大而增大,当x=5时,MN有最大值,(5)2=12;综上可知在点M自点A运动至点E的过程中,线段MN长度的最大值为1216、如图,抛物线与轴交于点A,与轴交于点B,C两点(点C在轴正半轴上),ABC为等腰直角三角形,且面积为4. 现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与轴的另一交点为E,其顶点为F,对称轴与轴的交点为H.21(1)求,的值;(2)连结OF,试判断OEF是否为等腰三角形,并说明理由;(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与轴相交于点P,是否存在这样的点Q,使以点P,Q,E为顶点的三角形与POE全等?若存在,求出点Q的坐标;若不存在,请说明理由.【解析】(1)ABC为等腰直角三角形,OA=BC.又ABC的面积=BCOA=4,即=4,OA=2. A ,B ,C .,解得.(2)OEF是等腰三角形. 理由如下:如答图1,A ,B ,直线AB的函数表达式为,又平移后的抛物线顶点F在射线BA上,设顶点F的坐标为(m,m+2).平移后的抛物线函数表达式为.抛物线过点C ,解得.平移后的抛物线函数表达式为,即.当y=0时,解得.E(10,0),OE=10.又F(6,8),OH=6,FH=8.,OE=OF,即OEF为等腰三角形.(3)存在. 点Q的位置分两种情形:情形一:点Q在射线HF上,当点P在轴上方时,如答图2.PQEPOE, QE=OE=10.在RtQHE中,,Q.当点P在轴下方时,如答图3,有PQ=OE=10,过P点作于点K,则有PK=6.在RtPQK中,,,.,.又,. , 即,解得.Q.情形二:点Q在射线AF上,当PQ=OE=10时,如答图4,有QE=PO,四边形POEQ为矩形,Q的横坐标为10.当时, Q.当QE=OE=10时,如答图5.过Q作轴于点M,过E点作x轴的垂线交QM于点N,设Q的坐标为,.在中,有, 即,解得.当时,如答图5,Q.当时,如答图6, .综上所述,存在点Q或或或或,使以P,Q,E三点为顶点的三角形与POE全等.17、如图,直线y=x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点21cnjy(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当BEC面积最大时,请求出点E的坐标和BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由【解析】(1)直线y=x+3与x轴交于点C,与y轴交于点B,点B的坐标是(0,3),点C的坐标是(4,0),抛物线y=ax2+x+c经过B、C两点,解得y=x2+x+3(2)如图1,过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,点E是直线BC上方抛物线上的一动点,设点E的坐标是(x,x2+x+3),则点M的坐标是(x,x+3),EM=x2+x+3(x+3)=x2+x,SABC=SBEM+SMEC=(x2+x)4=x2+3x=(x2)2+3,当x=2时,即点E的坐标是(2,3)时,BEC的面积最大,最大面积是3(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形如图2,由(2),可得点M的横坐标是2,点M在直线y=x+3上,点M的坐标是(2,),又点A的坐标是(2,0),AM=,AM所在的直线的斜率是:;y=x2+x+3的对称轴是x=1,设点Q的坐标是(1,m),点P的坐标是(x,x2+x+3),则解得或,x0,点P的坐标是(3,)如图3,由(2),可得点M的横坐标是2,点M在直线y=x+3上,点M的坐标是(2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025二手车买卖合同模板
- 磷铵的功效与作用
- 醋的作用与禁忌
- 个体工商户租赁商铺合作协议范本
- 企业签订合同过程中因失职被骗罪责任追究协议
- 网络安全行业离职员工技术秘密及网络安全保密协议
- 中药配方颗粒质量标准与市场细分领域竞争力分析与提升策略报告
- 全套汽车美容店租赁合同书(含装修与设备安装)
- 资产管理公司债权债务三方转让与投资风险控制协议
- 房屋买卖合同贷款申请与审批服务协议
- 湿地巡护员培训课件
- 2025鄂尔多斯市城市建设投资集团招聘92人考试参考题库及答案解析
- 小班海浪滚滚课件
- 老年痴呆科普课件
- 汽车底盘安全培训课件
- 食品添加剂培训课件
- 儿童安全用电防范培训内容课件
- 一氧化碳试卷及答案
- 2025年全国企业员工全面质量管理知识竞赛题库及答案(共132题) - 副本
- 深圳创业投资行业发展状况
- 《会议摄影怎样拍出彩?》PPT课件
评论
0/150
提交评论