2.12 直线的方程.doc_第1页
2.12 直线的方程.doc_第2页
2.12 直线的方程.doc_第3页
2.12 直线的方程.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

21.2直线的方程学习目标1.掌握直线方程的点斜式、斜截式、两点式和截距式的特点与适用范围,会将这四种形式的直线方程化为一般式;2了解直线方程的斜截式与一次函数的关系,正确理解直线方程一般式的含义3能根据具体问题的具体条件选择恰当的形式求直线方程新知初探思维启动1.点斜式方程:_ _,它表示经过点P1(x1,y1),且斜率为k的直线2.斜截式方程:_ _,它表示经过点P(0,b),且斜率为k的直线方程b为直线l在y轴上的_3.两点式方程:_,它表示经过点P1(x1,y1)、P2(x2,y2)的直线方程4.截距式方程:_ _,它表示经过点A(a,0),B(0,b)的直线方程其中a为直线在 _上的截距,也称横截距,b为直线在 _上的截距,也称纵截距5.一般式方程:_ _(其中A、B、C是常数,_不全为0),它可以表示平面内的任何一条直线想一想1.平面直角坐标系下,任何直线都有点斜式方程吗?2.截距与距离是一回事吗?做一做 3.已知直线l的斜率为,且l经过点(4,5),则直线l的点斜式方程为_已知直线的倾斜角为60,在y轴上的截距为2,则此直线的斜截式方程为_已知直线在x轴、y轴上的截距分别为2和5,则直线的截距式方程为_若直线m过定点(1,1)和(2,5),且点(2012,a)在m上,则a的值为_题型一 直线的点斜式、斜截式方程例1根据条件写出下列直线的方程:(1)过点A(4,3),斜率k3;(2)经过点B(1,4),倾斜角为135;(3)过点C(1,2)且与y轴平行;(4)过点D(2,1)和E(3,4)变式训练 根据条件写出下列直线的斜截式方程(1)斜率为2,在y轴上的截距是5;(2)倾斜角为150,在y轴上的截距是2;(3)倾斜角为60,与y轴的交点到坐标原点的距离为3.题型二 直线的两点式和截距式方程例2 三角形的顶点是A(5,0),B(3,3),C(0,2)(如图所示),求这个三角形三边所在的直线的方程变式训练2.已知直线l经过点(3,4),且在两轴上的截距相等,求直线l的方程题型三 直线的一般式方程例3 (本题满分14分)设直线l的方程为(m22m3)x(2m2m1)y2m6,根据下列条件分别确定m的值(1)直线l的斜率为1;(2)直线l的横、纵截距相等变式训练3.根据下列条件分别求出直线的方程,并化为一般式方程(1)斜率为3,经过点(5,4);(2)斜率为2,经过点(0,2);(3)经过两点(2,0)和(0,3);(4)斜率为2,经过点(2,0)备选例题1.求与两坐标轴围成的三角形面积为4,且斜率为2的直线l的方程已知直线l过三个点A(3,a),B(b,4),C(1,1)(1)求a,b满足的关系式;(2)若l的斜率为, 求a,b的值;(3)在(2)的条件下,求直线l与坐标轴所围成的三角形的面积倾斜角为30,且在x轴上截距为2的直线的方程为_若直线l过点A(1,1),B(2,4),则直线l的方程为_经过点M(2,2),N(2,4)的直线方程为_直线xy50的倾斜角为_,它在y轴上的截距为_若直线的截距式1化为斜截式为y2xb,化为一般式为bxay80,且a0,则ab_下列说法不正确的是_(填序号)点斜式yy1k(xx1)适用于不垂直于x轴的任何直线;斜截式ykxb适用于不垂直于x轴的任何直线;两点式适用于不垂直于x轴和y轴的任何直线;截距式1适用于不过原点的任何直线解析:与坐标轴平行的直线也不能用截距式表示(2012无锡质检)直线y2(x1)的倾斜角及在y轴上的截距分别为_、_直线l经过点A(2,2)且与直线yx6在y轴上有相同的截距,则直线l的方程为_过点A(1,4)且在x轴、y轴上的截距的绝对值相等的直线共有_条经过点A(2,2)且与x轴、y轴围成的三角形面积为1的直线方程是_已知直线l的倾斜角为60,在y轴上的截距为4,求:(1)直线l的点斜式方程以及截距式方程、斜截式方程和一般式方程;(2)l与坐标轴所围成的三角形的周长和面积已知直线l:5ax5ya30.(1)求证:不论a为何值,直线l总经过第一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论