




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
26.2 用函数观点看一元二次方程4已知抛物线y=x2+(n3)x+n+1经过坐标原点O(1)求这条抛物线的顶点P的坐标;(2)设这条抛物线与x轴的另一个交点为A,求以直线PA为图象的一次函数的解析式5已知抛物线y=x2mx+与抛物线y=x2+mxm2在平面直角坐标系中的位置如图2621,其中一条与x轴交于A、B两点(1)试判断哪一条抛物线经过A、B两点?并说明理由(2)若A、B两点到原点的距离OA、OB满足,求经过A、B两点的抛物线的关系式5如图2622,抛物线y=(x+1)22,(1)设此抛物线与x轴交点为A、B(A在B的左边),请你利用图象求出A、B两点的坐标;(2)有一条直线y=x1,试利用图象法求出该直线与抛物线的交点坐标;(3)P是抛物线上的一个动点,问是否存在一点P,使SABP=2?若存在,则有几个这样的点P?并写出它们的坐标 图26226已知抛物线y=2x2和直线y=ax+5(1)求证:抛物线与直线一定有两个不同的交点;(2)设A(x1,y1)、B(x2,y2)是抛物线与直线的两个交点,点P是线段AB的中点,且点P的横坐标为,试用含a的代数式表示点P的纵坐标;(3)设A,B两点的距离d=x1x2,试用含a的代数式表示d.10已知m,n是方程x26x+5=0的两个实数根,且mn,抛物线y=x2+bx+c的图象经过点A(m,0)、B(0,n)(1)求这个抛物线的解析式;(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和BCD的面积;注:抛物线y=ax2+bx+c(a0)的顶点坐标为()(3)P是线段OC上的一点,过点P作PHx轴,与抛物线交于H点,若直线BC把PCH分成面积之比为23的两部分,请求出P点的坐标 图26249.在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴的负半轴相交于点C(如图26.213),点C的坐标为(0,3),且BO=CO. (1)求这个二次函数的解析式;(2)设这个二次函数的图象的顶点为M,求AM的长. 图26.21314. 已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点.(1)求此抛物线的解析式;(2)若点D为线段OA的一个三等分点,求直线DC的解析式;(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.263 实际问题与二次函数(二)3.如图26322,正方形ABCD的边长为2 cm,E、F、G、H分别从A、B、C、D向B、C、D、A同时以05 cm/s的速度移动,设运动时间为t(s)(1)求证:HAEEBF;(2)设四边形EFGH的面积为S(cm2),求S与t的函数关系式,并写出自变量t的取值范围;(3)t为何值时,S最小,是多少?4.如图26323,在矩形OABC中,OA=8,OC=4,OA、OC分别在x,y轴上,点O在OA上,且CD=AD, (1)求直线CD的解析式;(2)求经过B、C、D三点的抛物线的解析式;(3)在上述抛物线上位于x轴下方的图象上,是否存在一点P,使PBC的面积等于矩形的面积?若存在,求出点P的坐标,若不存在,请说明理由 图263236.如图26324,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P从O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动,如果P、Q同时出发,用t(秒)表示移动的时间(0t6),那么(1)设POQ的面积为y,求y关于t的函数解析式;(2)当POQ的面积最大时,将POQ沿直线PQ翻折得到PCQ,试判断点C是否落在直线AB上,并说明理由. 图263247.已知ABC的面积为2 400 cm2,底边BC长为80 cm,如图26325若点D在BC边上,E在AC边上,F在AB边上,且四边形BDEF为平行四边形,设BD=x cm,SBDEF=y cm2求:(1)y与x的函数关系式;(2)自变量x的取值范围;(3)当x为何值时,y有最大值,最大值为多少? 图263258.在青岛市开展的创建活动中,某小区要在一块一边靠墙(墙长15米)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长度为40米的栅栏围成(如图26326所示)若设花园BC的边长为x米,花园的面积为y米2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围.(2)满足条件的花园面积能达到200米2吗?如果能,求出此时的x的值;若不能,请说明理由.(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x取何值时,花园的面积最大?最大面积为多少? 图263266.某经营商购进一种商品原料7 000千克存在某货场,进价为每千克30元,物价部门最高限价为每千克70元市场调查发现,单价为70元,日均售60千克,每降一元,日多售2千克每天需向货场支付500元存货费(不足一天,按一天计)问:(1)日销售单价为多少时,日均获利最大?(2)如将该种原料全部售完,比较日均获利最大和单价最高这两种销售方式,哪种总获利多?多多少?18、(8分)如图,已知二次函数的图像经过点和点(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点(,)与点D均在该函数图像上(其中0),且这两点关于抛物线的对称轴对称,求的值及点D到轴的距离 xyOABCD19、(8分)如图,抛物线经过直线与坐标轴的两个交点A、B,此抛物线与轴的另一个交点为C,抛物线顶点为D.(1)求此抛物线的解析式;(2)点P为抛物线上的一个动点,求使:5 :4的点P的坐标.20、 (12分) 红星建材店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理)当每吨售价为260元时,月销售量为45吨该建材店为提高经营利润,准备采取降价的方式进行促销经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元设每吨材料售价为x(元),该经销店的月利润为y(元)(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该建材店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由19如图,从O点射出炮弹落地点为D,弹道轨迹是抛物线,若击中目标C点,在A测C的仰角BAC45,在B测C的仰角ABC30,AB相距,OA2km,AD2km (1)求抛物线解析式;(2)求抛物线对称轴和炮弹运行时最高点距地面的高度20二次函数y1ax22bxc和y(a1)x22(b2)xc3在同一坐标系中的图象如图所示,若OBOA,BCDC,且点B,C的横坐标分别为1,3,求这两个函数的解析式1.如图1,已知直线EA与x轴、y轴分别交于点E和点A(0,2),过直线EA上的两点F、G分别作轴的垂线段,垂足分别为M(m,0)和N(n,0),其中m0,n0 l图2图1NMEFPGBAxOyyNMFEOGxA(1)如果m4,n1,试判断AMN的形状; (2)如果mn4,(1)中有关AMN的形状的结论还成立吗?如果成立,请证明;如果不成立,请说明理由; (3)如图2,如果mn,并且ON4,求经过M、A、N三点的抛物线所对应的函数关系式; (4)在(3)的条件下,如果抛物线的对称轴与线段AN交于点P,点Q是对称轴上一动点,以点P、Q、N为顶点的三角形和以点M、A、N为顶点的三角形相似,求符合条件的点Q的坐标2. 如图,在平面直角坐标系中,两个一次函数y=x,y=的图象相交于点A,动点E从O点出发,沿OA方向以每秒1个单位的速度运动,作EFy轴与直线BC交于点F,以EF为一边向x轴负方向作正方形EFMN,设正方形EFMN与AOC的重叠部分的面积为S. (1)求点A的坐标; (2)求过A、B、O三点的抛物线的顶点P的坐标; ACOByxFEMN(3)当点E在线段OA上运动时,求出S与运动时间t(秒)的函数表达式; (4)在(3)的条件下,t为何值时,S有最大值,最大值是多少?此时(2)中的抛物线的顶点P是否在直线EF上,请说明理由.-2参考答案4已知抛物线y=x2+(n3)x+n+1经过坐标原点O(1)求这条抛物线的顶点P的坐标;(2)设这条抛物线与x轴的另一个交点为A,求以直线PA为图象的一次函数的解析式解:(1)抛物线y=x2+(n3)x+n+1经过原点,n+1=0 n=1得y=x24x,即y=x24x=(x2)24抛物线的顶点P的坐标为(2,4)(2)根据题意,得点A的坐标为(4,0)设所求的一次函数解析式为y=kx+b根据题意,得解得所求的一次函数解析式为y=2x85已知抛物线y=x2mx+与抛物线y=x2+mxm2在平面直角坐标系中的位置如图2621,其中一条与x轴交于A、B两点图2621(1)试判断哪一条抛物线经过A、B两点?并说明理由(2)若A、B两点到原点的距离OA、OB满足,求经过A、B两点的抛物线的关系式解析:(1)经过A、B两点的抛物线的:(2)可根据一元二次方程根与系数关系来解.解法一:(1)y=x2mx+,中1=m22m2=m2抛物线不过原点,m0.m20.10,抛物线y=x2mx+不经过A、B点抛物线yx2+mxm2与y轴交于(0,m2),m20,方程有两个不相等的实数根不论a取何值,抛物线与直线一定有两个不同的交点(2)x1、x2是方程2x2ax5=0的两个根,x1+x2=,x1x2=点P的纵坐标为(x1+x2)+5=+5=+5(3)x1+x2=,x1x2=x1x2=.d=.10已知m,n是方程x26x+5=0的两个实数根,且mn,抛物线y=x2+bx+c的图象经过点A(m,0)、B(0,n)(1)求这个抛物线的解析式;(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和BCD的面积;注:抛物线y=ax2+bx+c(a0)的顶点坐标为()(3)P是线段OC上的一点,过点P作PHx轴,与抛物线交于H点,若直线BC把PCH分成面积之比为23的两部分,请求出P点的坐标图2624解:(1)解方程x26x+5=0,得x1=5,x2=1.由mn,m=1,n=5,所以点A、B的坐标分别为A(1,0),B(0,5)将A(1,0),B(0,5)的坐标分别代入y=x2+bx+c,得解这个方程组得所以,抛物线的解析式为y=x24x+5.(2)由y=x24x+5,令y=0,得x24x+5=0,解这个方程得x1=5,x2=1,所以C点的坐标为(5,0)由顶点坐标公式计算得点D(2,9)过D作x轴的垂线交x轴于M则SDMC=9(52)=,S梯形MDBO=2(9+5)=14,SBOC=55=,所以,SBCD=S梯形MDBO+SDMCSBOC=14+=15(3)设P点的坐标为(a,0),因为线段BC过B、C两点,所以BC所在的直线方程为y=x+5那么,PH与直线BC的交点坐标为E(a,a+5),PH与抛物线y=x24x+5的交点坐标为H(a,a24a+5)由题意,得EH=EP,即(a24a+5)(a+5)=(a+5).解这个方程,得a=或a=5(舍去).EH=EP,即(a24a+5)(a+5)=(a+5),解这个方程,得a=或a=5(舍去),P点的坐标为(,0)或(,0)9.解:(1)C(0,3),OC=|3|=3,c =3.又OC=OB,BO=3.B(3,0).9+3b3=0.解得b=2.y=x22x3.(2),当x=1时,y=123=4. M(1,4).A(1,0),.14.解:根据题意,c=3,所以解得所以,抛物线的解析式为(2)根据题意可得OA的三等分点分别为(0,1),(0,2).设直线CD的解析式为y=kx+m.当点D的坐标为(0,1)时,直线CD的解析式为y=x+1;当点D的坐标为(0,2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论