



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
此文档收集于网络,仅供学习与交流,如有侵权请联系网站删除绝对值不等式的常见形式及解法绝对值不等式解法的基本思路是:去掉绝对值符号,把它转化为一般的不等式求解,转化的方法一般有:(1)绝对值定义法;(2)平方法;(3)零点区域法。常见的形式有以下几种。1.形如不等式:利用绝对值的定义得不等式的解集为:。在数轴上的表示如图1。2.形如不等式:它的解集为:。在数轴上的表示如图2。3.形如不等式它的解法是:先化为不等式组:,再利用不等式的性质来得解集。4.形如它的解法是:先化为不等式组:,再利用不等式的性质求出原不等式的解集。例如:解不等式:(1)(2)(3)解:(1)由绝对值的定义得:或解得(2)两边同时平方得:(3)令得。所以和3把实数分为三个区间,即:;。在这三个区间内来讨论原不等式的解集。初等幂函数图像极坐标转直角坐标的办法两边都乘以r,比如说r=2sinX 两边同时乘以r成为r2=2rsinXx2+y2=2y如2cos,同乘r,即r2=2rcos,又因为r2等于x2+y2,所以x2+y2=2y学习资料诱导公式记忆口诀:“奇变偶不变,符号看象限”。公式一: 设为任意角,终边相同的角的同三角函数的值相等:sin(2k+)=sin kzcos(2k+)=cos kztan(2k+)=tan kzcot(2k+)=cot kz公式二: 设为任意角,+的三角函数值与的三角函数值之间的关系:sin(+)=sincos(+)=costan(+)=tancot(+)=cot公式三: 任意角与-的三角函数值之间的关系:sin()=sincos()=costan()=tancot()=cot公式四: 利用公式二和公式三可以得到-与的三角函数值之间的关系:sin()=sincos()=costan()=tancot()=cot公式五: 利用公式一和公式三可以得到2-与的三角函数值之间的关系:sin(2)=sincos(2)=costan(2)=tancot(2)=cot公式六: /2与的三角函数值之间的关系:sin(/2+)=coscos(/2+)=sintan(/2+)=cotcot(/2+)=tansin(/2)=coscos(/2)=sintan(/2)=cotcot(/2)=tan推算公式:3/2与的三角函数值之间的关系:sin(3/2+)=coscos(3/2+)=sintan(3/2+)=cotcot(3/2+)=tansin(3/2)=coscos(3/2)=sintan(3/2)=cotcot(3/2)=tan诱导公式记忆口诀:“奇变偶不变,符号看象限”。“奇、偶”指的是/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角看做锐角,不考虑角所在象限,看n(/2)是第几象限角,从而得到等式右边是正号还是负号。符号判断口诀:“一全正;二正弦;三正切;四余弦”。这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 统编版2025-2026学年 语文三年级上册 期中测试卷 (有答案)
- 河南省周口市等2地2025-2026学年高三上学期开学物理试题(含解析)
- 部门干部安全培训总结报告课件
- 部门安全培训概况课件
- 辩论程序课件
- 基于人工智能的合成路线智能生成与实验验证的闭环反馈系统构建
- 城市级智慧能源管理中探测器网络拓扑优化与能耗悖论解构
- 车队车辆安全培训课件
- 可降解高分子复合材料在一次性双极电极板降解周期与临床时效平衡中的挑战
- 可重构凸轮齿轮模块化设计对柔性制造系统的适配性研究
- 金属结构自检自查报告
- 2025年高端酒店装修设计与施工合同范本2篇
- 2023年政府采购评审专家考试题库(含答案)
- GB/T 45083-2024再生资源分拣中心建设和管理规范
- 沐足行业严禁黄赌毒承诺书
- 华南理工大学《微积分Ⅱ(二)》2021-2022学年第一学期期末试卷
- 高职数学课件 1.1函数
- GB/T 5526-2024动植物油脂相对密度的测定
- 北师大版 五年级上册数学 预习单
- 2.10丰巢智能柜合作协议
- 九一八知识竞赛题50题
评论
0/150
提交评论