(文理科合卷)高考模拟试卷3答案_第1页
(文理科合卷)高考模拟试卷3答案_第2页
(文理科合卷)高考模拟试卷3答案_第3页
(文理科合卷)高考模拟试卷3答案_第4页
(文理科合卷)高考模拟试卷3答案_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考模拟试卷(答案)(文理科合卷)数 学一、选择题(每小题5分,共50分)1、D ,故选D2、D , ,而.(选D)3、B 1x2 ,而2x,均大于0,故排除(A)、(D),作出函数y=2x,y=的图像,可得1x.故选(B)4、(理)A. 设为取出的2个球中红球的个数,则分布列为:012P,故选(A)(文)C 分三步,总数为:,(选C)5、C 故选(C)6、B 依约束条件画可行域(如图),则当直线经过点A()时,S=5x+4y,取最大值S=18,因x,yN*,所以当直线5x+4y=t平行移动时,从A点起,第一个通过的可行域中的整点是B(2,1),而不是C(1,2)点,故S最大值=14. 答案为(B)7、选(A)8、B 如图,设B1C1=1RtC1CB1中,CC1=,B1C=2C1D1=A1C1D中,A1C1=2,A1D=2,C1D=由余弦定理:故选(B)9、A 10、C 直线BF的斜率直线AB的斜率又又e1故选(C)二、填空题(每小题5分,共25分)11、(理)Z2=-2,故 (文)由已知得化简得5a2-10a+3=0a1, 。12、(理)x=0可设(a,b,c,d,eR)又的图象过点(0,-5)e=-5令:x=0或x=1或x=-1当x=0时f(0)=-5当x=1时f(1)=1-2-5=-6当x=-1时f(-1)=1-2-5=-6故取x=013、(文)(1,0)或(-1,-4)令:由题设时f(1)=0时P0的坐标为(1,0)或(-1,-4)13、0.48记“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B。则P=P(A(1-0.6)+(1-0.6)0.6=0.4814、,正确,pq,因为“x2” “x2或x=2”反之,由q推不出p。正确。错误,y=2-x(x0),x=-lg2y反函数为(x0且x1)正确,ABC中,sinAsinB15、x2=2y 如图,设P(x,y)在抛物线上 aa (a0)01故0a1三、解答题(本大题共6小题,共76分)16、(本小题满分12分)解:(1)=(cos23, sin23),=(cos68, sin68).=cos23cos68+sin23sin68=cos45=(4分)(2)又从而以为邻边的平行四边形的面积8分(3), ,当时,。12分17、(本小题满分12分)(1)证明:在PAB中,AP=a,AB=a,PAB=45AP2+PB2=2a2=AB2APB是直角三角形,且APPB4分又AP,DE都在平面PAB内,且DEPBAPDEAP平面DEC6分(2)解:在APC中,AP=a,AC=aPAC=45APC是直角三角形APPC如图建立空间直角坐标系,由已知得,A,B,C三点的坐标分别为:A(0,a,0),B(),C(a,0,0)8分且D是AB的中点,DEAP10分12分18、(本小题满分12分)(理)【解题说明】本试题考查函数与导数,函数与不等式知识点交汇处的综合求解运用问题。解决该试题关键是求导的正确性,及其对于不等式恒成立问题的转化,利用最值问题来完成。【答案】(1)在单调递减,在单调递增(2)【解析】解:(1) 令 由于的定义域为, 在单调递减,在单调递增6分(2) ,由于当x = 1时, (文)(1)当时,任取x10在 上恒成立。8分设g(x)= x2+2x+a,,g(x)=(x+1)2+a-1在上是增函数,10分g(x)在上的最小值g(x)min=g(1)=3+a,故上述问题等价于3+a0,a-3。a的取值范围为(-3,+)。12分19、(本小题满分12分)(1)由已知:在中当x=1时,w=2k=31分2分年销售收入:y=M-(10+18w)-x6分(2)由(1)有x0x+109分等号成立当且仅当即x=5时,等号成立11分当年广告费为5万元时,年利润最大年最大利润是万元12分20、(本小题满分13分)(1)解:令M(x,y),则代入条件3分这就是动点M的轨迹方程当k=1时,表示直线y=0;当k=0时,表示圆;当k1时,表示双曲线;当0k1时或k0时,表示椭圆6分(2)由点的轨迹为椭圆7分10k1时,a2=1,b2=1-k,c2=k,e2=k9分2kca2=5舍去故所求椭圆方程为:7分(2)由椭圆定义知:8分又2-得212分21、(本小题满分14分)(理)【解题说明】本试题主要考查数列的通项公式的求解和不等式的证明的综合运用。首先利用递推关系式,我们得到相邻两项的关系式,构造等比数列求通项公式。对于对于第二问要承接上一问进行证明。【答案】(1)(2)略【解析】解:(1) 又 是以为首项,为公比的等比数列4分 6分(2) 由 (1) 知7分 原不等式成立12分(文)(1)证明:n=1时(3-p)S1+2pa1=p+3a1=11分n2时,由(3-p)Sn+2pan=p+32分得(3-p)Sn-1+2pan-1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论