浙江省绍兴市2017年中考数学模拟试卷(有详细解析)_第1页
浙江省绍兴市2017年中考数学模拟试卷(有详细解析)_第2页
浙江省绍兴市2017年中考数学模拟试卷(有详细解析)_第3页
浙江省绍兴市2017年中考数学模拟试卷(有详细解析)_第4页
浙江省绍兴市2017年中考数学模拟试卷(有详细解析)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省绍兴市2017年中考数学模拟试卷一 、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选,多选,错选,均不给分)3的倒数是()A3 B3 C D截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A14104B1.4105C1.4106D14106等腰三角形的两边长分别为4cm和8cm,则它的周长为()A16cm B17cm C20cm D16cm或20cm下列各图中,可以是一个正方体的平面展开图的是()ABCD掷一颗质地均匀且六个面上分别刻有1到6点的正方形骰子,观察向上的一面的点数,下列属于不可能事件的是()A出现的点数是3 B出现的点数为偶数C出现的点数不会是0 D出现的点数是8如图,过O外一点P引O的两条切线PAPB,切点分别是AB,OP交O于点C,点D是优弧上不与点A点C重合的一个动点,连接AD、CD,若APB=80,则ADC的度数是()A15 B20 C25 D30如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A1 B2 C3 D4如图,为了测量河岸A,B两点的距离,在与AB垂直的方向上取点C,测得AC=a,ABC=,那么AB等于( )A asin Bacos Catan D 如图,二次函数y=ax2+bx+c(a0)的图象经过点(1,2),且与X轴交点的横坐标分别为x1,x2,其中2x11,0x21,下列结论:4a2b+c0;2ab0;a+c1;b2+8a4ac,其中正确的有()A1个 B2个 C3个 D4个观察下列一组图形中点的个数,其中第一个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,按此规律第6个图形中共有点的个数是 ()A38 B46 C61 D64二 、填空题(本大题共6小题,每小题5分,共30分)分解因式:2a32a= 不等式组:的解集是圆内接正六边形的边心距为,则这个正六边形的面积为 cm2方程(2a1)x2+3x+1=4是一元一次方程,则a=知点A(1,y1),B(1,y2), C(2, y3)都在反比例函数y(k0)的图象上,则_ (填y1,y2, y3).如图,在边长为2的菱形ABCD中,A=60,M是AD边的中点,N是AB边上的一动点,将AMN沿MN所在直线翻折得到AMN,连接AC,则AC长度的最小值是 三 、解答题(本大题有8小题,第17-20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)计算:为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图请根据图中提供的信息,解答下列问题:(1)本次抽样调查了多少个家庭?(2)将图中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内;(3)求用车时间在11.5小时的部分对应的扇形圆心角的度数;(4)若该社区有车家庭有1600个,请你估计该社区用车时间不超过1.5小时的约有多少个家庭?某企业生产并销售某种产品,假设销售量与产量相等下图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单元:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系(1)请解释图中点D的横坐标、纵坐标的实际意义(2)求线段AB所表示的y1与x之间的函数表达式(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?如图,ABC中,ACB=90,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E(1)求线段CD的长;(2)求cosABE的值如图,需在一面墙上绘制几个相同的抛物线型图案按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a0)表示已知抛物线上B,C两点到地面的距离均为m,到墙边似的距离分别为m, m(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?如图,ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90,点P为射线BD,CE的交点(1)求证:BD=CE;(2)若AB=2,AD=1,把ADE绕点A旋转,当EAC=90时,求PB的长;直接写出旋转过程中线段PB长的最小值与最大值如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE(1)求证:DEAG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0360)得到正方形OEFG,如图2在旋转过程中,当OAG是直角时,求的度数;若正方形ABCD的边长为1,在旋转过程中,求AF长的最大值和此时的度数,直接写出结果不必说明理由爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”如图(1)、图(2)、图(3)中,AM、BN是ABC的中线,ANBN于点P,像ABC这样的三角形均为“中垂三角形”设BC=a,AC=b,AB=c【特例探究】(1)如图1,当tanPAB=1,c=4时,a=,b=;如图2,当PAB=30,c=2时,a=,b=;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论【拓展证明】(3)如图4,ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BECE于E,AF与BE相交点G,AD=3,AB=3,求AF的长参考答案一 、选择题1.【考点】倒数分析:直接根据倒数的定义进行解答即可 解:(3)()=1,3的倒数是故选:D2分析:将140000用科学记数法表示即可解:140000=1.4105,故选B3. 分析:根据等腰三角形的性质,本题要分情况讨论当腰长为4cm或是腰长为8cm两种情况 解:等腰三角形的两边长分别为4cm和8cm,当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm故选C4.分析:正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图 解:A属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误故选:C5. 分析:不可能事件就是一定不会发生的事件,据此即可判断 解:A是随机事件,选项错误;B、是随机事件,选项错误;C、是必然事件,选项错误;D、是不可能事件故选D6.分析:根据四边形的内角和,可得BOA,根据等弧所对的圆周角相等,根据圆周角定理,可得答案 解;如图,由四边形的内角和定理,得BOA=360909080=100,由=,得AOC=BOC=50由圆周角定理,得ADC=AOC=25,故选:C7. 分析:作F点关于BD的对称点F,则PF=PF,由两点之间线段最短可知当E、P、F在一条直线上时,EP+FP有最小值,然后求得EF的长度即可 解:作F点关于BD的对称点F,则PF=PF,连接EF交BD于点PEP+FP=EP+FP由两点之间线段最短可知:当E、P、F在一条直线上时,EP+FP的值最小,此时EP+FP=EP+FP=EF四边形ABCD为菱形,周长为12,AB=BC=CD=DA=3,ABCD,AF=2,AE=1,DF=AE=1,四边形AEFD是平行四边形,EF=AD=3EP+FP的最小值为3故选:C8. 分析:根据已知角的正切值表示即可解:AC=a,ACB=,在直角ABC中tan=,AB=atan故选:C9. 分析:将x=2代入y=ax2+bx+c,可以结合图象得出x=2时,y0;由抛物线开口向下,可得a0;由图象知抛物线的对称轴大于1,则有x=1,即可得出2ab0;已知抛物线经过(1,2),即ab+c=2(1),由图象知:当x=1时,y0,即a+b+c0(2),联立(1)(2),可得a+c1;由抛物线的对称轴大于1,可知抛物线的顶点纵坐标应该大于2,结合顶点的纵坐标与a0,可以得到b2+8a4ac 解:由函数的图象可得:当x=2时,y0,即y=4a2b+c0,故正确;由函数的图象可知:抛物线开口向下,则a0;抛物线的对称轴大于1,即x= -b/2a1,得出2ab0,故正确;已知抛物线经过(1,2),即ab+c=2(1),由图象知:当x=1时,y0,即a+b+c0(2),联立(1)(2),得:a+c1,故正确;由于抛物线的对称轴大于1,所以抛物线的顶点纵坐标应该大于2,即:2,由于a0,所以4acb28a,即b2+8a4ac,故正确,故选D10.解:第1个图形中共有4个点,第2个图形中共有10个点,比第1个图形中多了6个点;第3个图形中共有19个点,比第2个图形中多了9个点;,按此规律可知,第4个图形比第3个图形中多12个点,所以第4个图形中共有121931个点,第5个图形比第4个图形中多15个点,所以第5个图形中共有311546个点,第6个图形比第5个图形中多18个点,所以第6个图形中共有461864个点,故选D.二 、填空题11. 分析:先提取公因式2a,再对余下的多项式利用平方差公式继续分解 解:2a32a=2a(a21)=2a(a+1)(a1)故答案为:2a(a+1)(a1)12. 分析:分别解两个不等式得到x1和x5,然后根据同大取大确定不等式组的解集 解:,解得x1,解得x5,所以不等式组的解集为x5故答案为x513.解:因为圆内接正六边形的两条半径与正六边形边长组成等边三角形,由边心距可求得正六边形的边长是,把正六边形分成6个这样的三角形,则这个正六边形的面积为426= 14. 分析: 只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程它的一般形式是ax+b=0(a,b是常数且a0)解答: 解:由题意得:2a1=0,所以a=故答案为:15.解:由已知可得:y1, y2, y3.k0,kk.即y1y3y2.16. 分析:根据题意,在N的运动过程中A在以M为圆心、AD为直径的圆上的弧AD上运动,当AC取最小值时,由两点之间线段最短知此时M、A、C三点共线,得出A的位置,进而利用锐角三角函数关系求出AC的长即可 解:如图所示:MA是定值,AC长度取最小值时,即A在MC上时,过点M作MFDC于点F,在边长为2的菱形ABCD中,A=60,M为AD中点,2MD=AD=CD=2,FDM=60,FMD=30,FD=MD=,FM=DMcos30=,MC=,AC=MCMA=1故答案为:1三 、解答题17. 分析:利用零指数幂;负整指数幂;绝对值;特殊角的三角函数值的法则计算即可18. 分析:(1)用1.52小时的频数除以其所占的百分比即可求得抽样调查的人数;(2)根据圆心角的度数求出每个小组的频数即可补全统计图;(3)用人数除以总人数乘以周角即可求得圆心角的度数;(4)用总人数乘以不超过1.5小时的所占的百分比即可 解:(1)观察统计图知:用车时间在1.52小时的有30个,其圆心角为54,故抽查的总人数为30=200个;(2)用车时间在0.51小时的有200=60个;用车时间在22.5小时的有200603090=20个,统计图为:中位数落在11.5小时这一小组内(3)用车时间在11.5小时的部分对应的扇形圆心角的度数为360=162;(4)该社区用车时间不超过1.5小时的约有1600=1200个;19. 分析:(1)根据点D的横坐标、纵坐标的实际意义得出答案(2)设线段AB所表示的y1与x之间的函数关系式为,用待定系数法求出(3)求出y2与x之间的函数表达式,设产量为xkg时,利用利润W= y2x 讨论得出 解:(1)点D的横坐标、纵坐标的实际意义:当产量为为130kg时,该产品每千克生产成本与销售价相等,都为42元。(2)设线段AB所表示的y1与x之间的函数关系式为 因为的图像过(0,60)与(90,42),所以 解方程组得 这个一次函数的表达式为 (3)设y2与x之间的函数表达式为 因为的图像过(0,120)与(130,42),所以 解方程组得 这个一次函数的表达式为 设产量为xkg时,获得的利润为W元。当时,。所以当x=75时,W的值最大,最大值为2250.当时,当x=90时,由-0.665时,W随x的增大而减小,所以时,.因此,当该产品产量为75kg时获得的利润最大,最大利润是2250元。20分析: (1)在ABC中根据正弦的定义得到sinA=,则可计算出AB=10,然后根据直角三角形斜边上的中线性质即可得到CD=AB=5;(2)在RtABC中先利用勾股定理计算出AC=6,在根据三角形面积公式得到SBDC=SADC,则SBDC=SABC,即CDBE=ACBC,于是可计算出BE=,然后在RtBDE中利用余弦的定义求解解答: 解:(1)在ABC中,ACB=90,sinA=,而BC=8,AB=10,D是AB中点,CD=AB=5;(2)在RtABC中,AB=10,BC=8,AC=6,D是AB中点,BD=5,SBDC=SADC,SBDC=SABC,即CDBE=ACBC,BE=,在RtBDE中,cosDBE=,即cosABE的值为21. 分析:(1)根据题意求得B(,),C(,),解方程组求得拋物线的函数关系式为y=x2+2x;根据抛物线的顶点坐标公式得到结果;(2)令y=0,即x2+2x=0,解方程得到x1=0,x2=2,即可得到结论 解:(1)根据题意得:B(,),C(,),把B,C代入y=ax2+bx得,解得:,拋物线的函数关系式为y=x2+2x;图案最高点到地面的距离=1;(2)令y=0,即x2+2x=0,x1=0,x2=2,102=5,最多可以连续绘制5个这样的拋物线型图案22. 分析:(1)欲证明BD=CE,只要证明ABDACE即可(2)分两种情形a、如图2中,当点E在AB上时,BE=ABAE=1由PEBAEC,得=,由此即可解决问题b、如图3中,当点E在BA延长线上时,BE=3解法类似a、如图4中,以A为圆心AD为半径画圆,当CE在A下方与A相切时,PB的值最小b、如图5中,以A为圆心AD为半径画圆,当CE在A上方与A相切时,PB的值最大分别求出PB即可 (1)证明:如图1中,ABC和ADE是等腰直角三角形,BAC=DAE=90,AB=AC,AD=AE,DAB=CAE,在ADB和AEC中,ADBAEC,BD=CE(2)解:a、如图2中,当点E在AB上时,BE=ABAE=1EAC=90,CE=,同(1)可证ADBAECDBA=ECAPEB=AEC,PEBAEC=,=,PB=b、如图3中,当点E在BA延长线上时,BE=3EAC=90,CE=,同(1)可证ADBAECDBA=ECABEP=CEA,PEBAEC,=,=,PB=,综上,PB=或解:a、如图4中,以A为圆心AD为半径画圆,当CE在A下方与A相切时,PB的值最小理由:此时BCE最小,因此PB最小,(PBC是直角三角形,斜边BC为定值,BCE最小,因此PB最小)AEEC,EC=,由(1)可知,ABDACE,ADB=AEC=90,BD=CE=,ADP=DAE=AEP=90,四边形AEPD是矩形,PD=AE=1,PB=BDPD=1b、如图5中,以A为圆心AD为半径画圆,当CE在A上方与A相切时,PB的值最大理由:此时BCE最大,因此PB最大,(PBC是直角三角形,斜边BC为定值,BCE最大,因此PB最大)AEEC,EC=,由(1)可知,ABDACE,ADB=AEC=90,BD=CE=,ADP=DAE=AEP=90,四边形AEPD是矩形,PD=AE=1,PB=BD+PD=+1综上所述,PB长的最小值是1,最大值是+123.分析:(1)延长ED交交AG于点H,易证AOGDOE,得到AGO=DEO,然后运用等量代换证明AHE=90即可;(2)在旋转过程中,OAG成为直角有两种情况:由0增大到90过程中,当OAG=90时,=30,由90增大到180过程中,当OAG=90时,=150;当旋转到AO、F在一条直线上时,AF的长最大,AF=AO+OF=+2,此时=315 解:(1)如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,OA=OD,OAOD,OG=OE,在AOG和DOE中,AOGDOE,AGO=DEO,AGO+GAO=90,AGO+DEO=90,AHE=90,即DEAG;(2)在旋转过程中,OAG成为直角有两种情况:()由0增大到90过程中,当OAG=90时,OA=OD=OG=OG,在RtOAG中,sinAGO=,AGO=30,OAOD,OAAG,ODAG,DOG=AGO=30,即=30;()由90增大到180过程中,当OAG=90时,同理可求BOG=30,=18030=150综上所述,当OAG=90时,=30或150如图3,当旋转到AO、F在一条直线上时,AF的长最大,正方形ABCD的边长为1,OA=OD=OC=OB=,OG=2OD,OG=OG=,OF=2,AF=AO+OF=+2,COE=45,此时=31524. 分析:(1)首先证明APB,PEF都是等腰直角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论