



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 直角三角形的边角关系30,45,60角的三角函数值教学设计说明崇仁一中 黎军祥一、教材分析本节课是在学生已有的直角三角形有关知识的基础上,根据三角函数的定义,探究30,45,60三个特殊角的三角函数值,要求能利用特殊角的三角函数值进行基本的运算,并能根据三角函数特殊值求出特殊角;能根据生活中一些较简单的实际问题抽象出一定的几何模型,并由抽象出来的几何模型进行分析和计算,得出实际问题中需要的结果,在教学中要进一步渗透三角函数中量与量之间的相互联系、以及相互转化的观点,培养学生观察、分析、比较、概括的思维能力.对已学习能力较高的学生要求很理解并掌握任意两个锐角互余时,正、余弦之间的关系和正切之间的关系,并能利用这一性质进行简单的三角变换或相应计算.二、教学目标知识目标 1.经历探索30,45,60角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义. 2.能够进行30,45,60角的三角函数值的计算.3.能够根据30,45,60的三角函数值说明相应的锐角的大小. 能力目标 1.经历探索30,45,60角的三角函数值的过程,发展学生观察、分析、发现的能力. 2.培养学生把实际问题转化为数学问题的能力. 情感目标 1. 积极参与数学活动,对数学产生好奇心.培养学生独立思考问题的习惯.2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点 1.探索30,45,60角的三角函数值. 2.能够进行含30,45,60角的三角函数值的计算. 3.比较锐角三角函数值的大小.教学难点:三角函数值的应用三、教学过程复习旧知活动内容:如图所示 在 RtABC中,C=90.(1)a、b、c三者之间的关系是 ,A+B= .(2)sinA= ,cosA= ,tanA= .sinB= ,cosB= ,tanB= .教师可引导学生,sinA和cosB之间的关系tanA和tanB之间的关系,让能力强的学生理解三角函数内部之间的关系讲解新课1、探索30角的三角函数值观察一副三角尺,其中有几个锐角?它们分别等于多少度? sin30等于多少呢?你是怎样得到的?与同伴交流. cos30等于多少?tan30呢?学生探讨、交流,得出 30角的三角函数值.教师提示学生BC=a,分别求出另外两条边的长.2、求出了30角的三角函数值,在同一个图中求出60的三个三角函数值. 3、让学生画出45角的三角形,根据图形求45三角函数值.并完成下表三角函数角sincotan3045160思考:1观察表格中函数值说说sinA和cosB之间的关系tanA和tanB之间的关系.2、观察表格,随着角度的增加,正弦、余弦、正切值的变化情况.3、若对于锐角a有sina=,则a= .例题讲解 例1、计算: (1)sin30+cos45; (2)sin260+cos260-tan45. =0基础练习(1)sin600-cos450; (2)cos600+tan600知识运用例2:一个小孩荡秋千,秋千链子的长度为2.5 m,当秋千向两边摆动时,摆角恰好为60,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m) 目的1、让学生能从实际问题中抽象出几何图形,利用几何图形解答实际问题2、熟练30、45、60角的三角函数值的计算.巩固练习1. 某商场有一自动扶梯,其倾斜角为30.高为7 m,扶梯的长度是多少?*2. 如图,在RtABC中,C=90,A,B ,C的对边分别是a,b,c. 证明:sin2A+cos2A=1.课堂小结1、直角三角形三边的关系.2、直角三角形两锐角的关系.3、直角三角形边与角之
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 镁金属储能系统成本效益比分析报告
- 暗室师三级安全教育(车间级)考核试卷及答案
- 白酒发酵工专项考核试卷及答案
- 电子绝缘材料试制工工艺创新考核试卷及答案
- 冲压模具工专项考核试卷及答案
- 3.3 海水的运动 第二课时 教学设计 2023-2024学年高中地理人教版(2019)必修一
- 部编版三年级语文上册教材分析报告
- 数学应用题解题方法指导
- 陶瓷洁具智能生产环境优化报告
- 数字化转型背景下企业人才培养计划
- 中华人民共和国统计法
- 形成性评价指导性规范:SOAP病例汇报评价
- 《召公谏厉王弭谤》详细课件
- 高等数学教材(文科)
- 歌词:半生雪(学生版)
- 3.2 参与民主生活 课件-2024-2025学年统编版道德与法治九年级上册
- 人教版九年级数学下册相似《相似三角形(第2课时)》示范教学设计
- JBT 6064-2015 无损检测 渗透试块通.用规范
- 中考数学计算题练习100道(2024年中考真题)
- JT-T-747.1-2020交通运输信息资源目录体系第1部分:总体框架
- 【手术室护士配合在外科手术护理中的应用进展3800字(论文)】
评论
0/150
提交评论