




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版数学八上探索多边形的内角和与外角和word说课教案2课时【精品 第四章四边形性质探索探索多边形的内角和与外角和(一)一学生起点分析学生已经学完三角形的内角和,对内角和的问题有了一定的认识,加上八年级的学生好奇心、求知欲强,互相评价、互相提问的积极性高因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,所以把这节课设计成一节探索活动课是切实可行的二教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级上册第四章第六节探索多边形内角和与外角和的第一课时本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力教学目标【知识与技能】掌握多边形内角和定理,进一步了解转化的数学思想【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造教学重难点【教学重点】多边形内角和定理的探索和应用【教学难点】多边形定义的理解;多边形内角和公式的推导;转化的数学思维方法的渗透三教学过程设计本节课分成七个环节第一环节创设现实情境,提出问题,引入新课;第二环节概念形成;第三环节实验探究;第四环节思维升华;第五环节能力拓展;第六环节课时小结;第七环节布置作业。 第一环节创设现实情境,提出问题,引入新课1多媒体展示蜂窝,教师结合图片让学生发现生活中无处不在的多边形2工人师傅锯桌面一个四边形的桌面,用锯子锯掉一个角,还剩几个角?目的1通过现实情境的展示,调动学生的情绪,激发起进一步学习的兴趣2把学生的注意力自然的引入研究方向,为课题的研究做铺垫第二环节概念形成1借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的元素2教师再给出严格规范的定义,特别借助学具说明“在平面内”的必要性此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形目的1对于边角这些能在图形中识别而又不要求学生掌握的描述性定义,采取学生类比三角形的表示方法来归纳,渗透类比的数学思想2借助于自制的直观教具,说明多边形定义中“在平面内”这一条件,易于学生理解,化解了难点第三环节实验探究(以四人小组为单位展开探究活动)提出问题三角形的内角和为180,那么多边形的内角和是多少度呢?从四边形开始研究活动一利用四边形探索四边形内角和要求先独立思考再小组合作交流完成)(师巡视,了解学生探索进程并适当点拨)(生思考后交流,把不同的方案在纸上完成)(组间交流,教师课件展示几种方法)教师帮助学生反思在刚才的探索活动中,大家有不同的方法求四边形的内角和,这些看似不同的方法有没有相似之处?进而引导学生得出我们是把四边形的问题转化成三角形,再由三角形内角和为180,求出四边形内角和为360,从而使问题得到解决!进一步提出新的探索活动。 活动二探索五边形内角和(要求独立思考,自主完成)注在探究过程中,有学生是把五边形分割成四边形和一个三角形来解决问题的四边形内角和为360加上三角形内角和180,就求出五边形内角和为540,教师在肯定其做法的同时,要指出这种方法的局限性,即“必须在知道比其少一条边的多边形内角和的基础上才能求出该多边形的内角和”第四环节思维升华教学过程探索n边形内角和,并试着说明理由(结合课件出示的图表从代数角度猜测公式,并从几何意义加以解读)n边形的内角和=(n2)?180正n边形的一个内角=?nn?1802=n?360180第五环节能力拓展抢答题1正八边形的内角和为_.2已知多边形的内角和为900,则这个多边形的边数为_.3一个多边形每个内角的度数是150,则这个多边形的边数是_.应用发散4如图所示的模板,按规定,AB,CD的延长线相交成80的角,因交点不在板上,不便测量,质检员测得BAE=122,DCF=155.如果你是质检员,如何知道模板是否合格?为什么?5小明有一个设想xx年奥运会在北京召开,要是能设计一个内角和是xx的多边形花坛该多有意义啊!小明的这个想法能实现吗?目的其中前三道比较基本,可采用抢答的形式完成,目的是复习今天所学,了解学生学习效果第4道题是能力拓展,培养学生应用数学知识解决实际问题的能力第5道题让学生感受数学的趣味性,以及与实际生活的联系第六环节课时小结教师和学生一起对本节课内容和同学们的表现做一小结,然后每位学生利用活动评价表进行自我量化考核,并于课下反馈给老师第七环节作业设想 (1)书上习题 (2)思考题一个多边形去掉一个内角后形成的多边形内角和为1800,你能求出原多边形的边数吗?四教学设计反思优美清晰、图象规范、色彩艳丽的幻灯片,不能代替规范的板书,它从静态体现知识之间的联系,有利于知识的系统化故而设计板书如下4.6.1探索多边形的内角和多边形在平面内,由若干条不在同一直线上的线段首尾顺次相连所组成的封闭图形叫做多边形。 n边形的内角和=(n2)180重点突出对自主探索与合作交流的过程及效果的评价,如关注学生能否尝试从不同角度分析和解决问题,能否体会与他人合作解决问题的重要性,能否尝试用不同方式清楚表达解决问题的过程,能否对解决问题的过程进行反思,获得解决问题的经验评价方式和方法师生共评,生生互评,学生自评第四章四边形性质探索探索多边形的内角和与外角和(二)一学生起点分析学生已经学完多边形的内角和,对内角和的问题有了一定的认识,加上八年级的学生好奇心、求知欲强,互相评价、互相提问的积极性高因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,所以考虑把这节课设计成一节探索活动课二教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级上册第四章第六节探索多边形内角和与外角和的第二课时本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力教学目标【知识与技能】经历探索多边形的外角和公式的过程;会应用公式解决问题;【过程与方法】培养学生把转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造教学重难点【教学重点】多边形外角和定理的探索和应用【教学难点】灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透三教学过程设计本节课分成6个环节第一环节创设情境,引入新课;第二环节问题解决;第三环节多边形的外角和外角和;第四环节巩固练习;第五环节课时小结;第六环节布置作业。 第一环节创设情境,引入新课问题(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。 (1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角? (2)他每跑完一圈,身体转过的角度之和是多少? (3)在上图中,你能求出1+2+3+4+5的结果吗?你是怎样得到的?目的利用生活情境,设计问题,激发学生的兴趣和积极性,同时给学生一定的思考空间。 第二环节问题解决对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。 然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思ABCDEABCDE12345O考。 如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思考,以便解决这个问题。 小亮是这样思考的如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA,OB,OC,OD,OE,得到,其中,=1,=2,=3,=4,=5这样,1+2+3+4+5=360问题引申1如果广场的形状是六边形那么还有类似的结论吗?2如果广场的形状是八边形呢?第三环节多边形的外角与外角和1多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。 2在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。 探究多边形的外角和,提出一般性的问题一个任意的凸n边形,它的外角和是多少?鼓励学生用多种方法解决这个问题,可以参考第二环节解决特殊问题的方法去解决这个一般性的问题。 方法类似探究多边形的内角和的方法,由三角形、四边形、五边形的外角和开始探究;方法由n边形的内角和等于(n-2)180出发,探究问题结论多边形的外角和等于360 (1)还有什么方法可以推导出多边形外角和公式? (2)利用多边形外角和的结论,能否推导出多边形内角和的结论?第四环节巩固练习例1一个多边形的内角和等于它的外角和的3倍,它是几边形?随堂练习1一个多边形的外角都等于60,这个多边形是几边形?2右图是三个不完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是几边形?为什么?挑战自我1在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?2在n边形的n个内角中,最多能有几个钝角?最多能有几个锐角?挑战自我的2个问题,对于新授课上的学生而言,难度是比较大的。 因为之前不管是多边形的内角和还是外角和,基本上都是利用等式,从“正向”解决的。 而这里要解决的问题,在解决的过程中,需要用到简单的不等式知识和“反证”的思想,对于初次接触这些的学生而言,难度是比较大的。 教师要注意讲解的方式方法。 第五环节课时小结多边形的外角及外角和的定义;多边形的外角和等于360;在探求过程中我们使用了观察、归纳的数学方法,并且运用了类比、转化等数学思想.第六环节布置作业习题411第1,2,3题 四、教学反
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全科医学综合知识考核试卷答案及解析
- 网格治理基础知识培训课件
- 听障者信息交互设计-洞察及研究
- 村庄建筑调色方案设计(3篇)
- 现代保洁服务流程及质量管理方案
- 中学召开教学研讨会工作方案
- 2025年学历类自考专业(护理)内科护理学(二)-内科护理学(二)参考题库含答案解析(5套)
- 2025年学历类自考专业(护理)内科护理学(一)-外科护理学(二)参考题库含答案解析(5套)
- 高校知识产权权属争议解决方案
- 2025年学历类自考专业(建筑工程)建筑施工(一)-建筑施工(一)参考题库含答案解析(5套)
- 苏教版分式章起始课-展示课件
- 《茶文化与茶健康》第一讲
- OBE理念下的小学音乐教学设计反向思路初探
- GB 24541-2022手部防护机械危害防护手套
- 《PLC与变频器控制》课件 1.PLC概述
- 智慧产业园综合管理平台解决方案
- 国王的恩赐-传奇-任务全书
- 资产负债表(个体工商户)
- 手枪射击技巧
- 水浒人物介绍-鲁智深
- 呼吸系统疾病患儿的护理课件
评论
0/150
提交评论