高考数学大一轮复习 12.1随机事件的概率课件 理 苏教版.ppt_第1页
高考数学大一轮复习 12.1随机事件的概率课件 理 苏教版.ppt_第2页
高考数学大一轮复习 12.1随机事件的概率课件 理 苏教版.ppt_第3页
高考数学大一轮复习 12.1随机事件的概率课件 理 苏教版.ppt_第4页
高考数学大一轮复习 12.1随机事件的概率课件 理 苏教版.ppt_第5页
已阅读5页,还剩87页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

12 1随机事件的概率 第十二章概率 随机变量及其概率分布 数学苏 理 基础知识 自主学习 题型分类 深度剖析 思想方法 感悟提高 练出高分 1 随机事件和确定事件 1 在一定条件下 必然会发生的事件叫做 2 在一定条件下 肯定不会发生的事件叫做 3 统称为确定事件 4 在一定条件下 可能发生也可能不发生的事件叫做 5 和统称为事件 一般用大写字母a b c 表示 必然事件 不可能事件 必然事件与不可能事件 随 机事件 确定事件 随机事件 2 概率和频率 1 在相同的条件s下重复n次试验 观察某一事件a是否出现 称n次试验中事件a出现的次数na为事件a出现的频数 称事件a出现的比例fn a 为事件a出现的频率 2 对于给定的随机事件a 在相同条件下 随着试验次数的增加 事件a发生的会在某个常数附近摆动并趋于稳定 我们可以用这个常数来刻画随机事件a发生的可能性大小 并把这个称为随机事件a的概率 记作p a 频率 常数 3 互斥事件与对立事件 1 如果事件a b互斥 那么事件a b发生的概率 等于事件a b分别发生的概率的和 即 2 如果两个互斥事件一个发生 那么称这两个事件为对立事件 事件a的对立事件记为 p a b p a p b 必有 4 概率的几个基本性质 1 概率的取值范围 2 必然事件的概率p e 3 不可能事件的概率p f 4 概率的加法公式如果事件a与事件b互斥 则p a b 5 对立事件的概率若事件a与事件b互为对立事件 则p a 0 p a 1 1 0 p a p b 1 p b 知识拓展 互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系 互斥事件是不可能同时发生的两个事件 而对立事件除要求这两个事件不同时发生外 还要求二者之一必须有一个发生 因此 对立事件是互斥事件的特殊情况 而互斥事件未必是对立事件 思考辨析 判断下面结论是否正确 请在括号中打 或 1 事件发生频率与概率是相同的 2 随机事件和随机试验是一回事 3 在大量重复试验中 概率是频率的稳定值 4 两个事件的和事件是指两个事件都得发生 5 对立事件一定是互斥事件 互斥事件不一定是对立事件 6 方程x2 2x 8 0有两个实根 是不可能事件 0 0 5 错 不一定是10件次品 解析 错 是频率而非概率 错 频率不等于概率 这是两个不同的概念 例1某城市有甲 乙两种报纸供居民们订阅 记事件a为 只订甲报纸 事件b为 至少订一种报纸 事件c为 至多订一种报纸 事件d为 不订甲报纸 事件e为 一种报纸也不订 判断下列每对事件是不是互斥事件 如果是 再判断它们是不是对立事件 1 a与c 题型一随机事件的关系 解由于事件c 至多订一种报纸 中有可能 只订甲报纸 即事件a与事件c有可能同时发生 故a与c不是互斥事件 例1某城市有甲 乙两种报纸供居民们订阅 记事件a为 只订甲报纸 事件b为 至少订一种报纸 事件c为 至多订一种报纸 事件d为 不订甲报纸 事件e为 一种报纸也不订 判断下列每对事件是不是互斥事件 如果是 再判断它们是不是对立事件 2 b与e 解事件b 至少订一种报纸 与事件e 一种报纸也不订 是不可能同时发生的 故b与e是互斥事件 由于事件b不发生可导致事件e一定发生 且事件e不发生会导致事件b一定发生 故b与e还是对立事件 例1某城市有甲 乙两种报纸供居民们订阅 记事件a为 只订甲报纸 事件b为 至少订一种报纸 事件c为 至多订一种报纸 事件d为 不订甲报纸 事件e为 一种报纸也不订 判断下列每对事件是不是互斥事件 如果是 再判断它们是不是对立事件 3 b与c 解事件b 至少订一种报纸 中有这些可能 只订甲报纸 只订乙报纸 订甲 乙两种报纸 事件c 至多订一种报纸 中有这些可能 一种报纸也不订 只订甲报纸 只订乙报纸 由于这两个事件可能同时发生 故b与c不是互斥事件 例1某城市有甲 乙两种报纸供居民们订阅 记事件a为 只订甲报纸 事件b为 至少订一种报纸 事件c为 至多订一种报纸 事件d为 不订甲报纸 事件e为 一种报纸也不订 判断下列每对事件是不是互斥事件 如果是 再判断它们是不是对立事件 4 c与e 解析 思维升华 解由 3 的分析 事件e 一种报纸也不订 是事件c的一种可能 即事件c与事件e有可能同时发生 故c与e不是互斥事件 例1某城市有甲 乙两种报纸供居民们订阅 记事件a为 只订甲报纸 事件b为 至少订一种报纸 事件c为 至多订一种报纸 事件d为 不订甲报纸 事件e为 一种报纸也不订 判断下列每对事件是不是互斥事件 如果是 再判断它们是不是对立事件 4 c与e 解析 思维升华 对互斥事件要把握住不能同时发生 而对于对立事件除不能同时发生外 其并事件应为必然事件 这些也可类比集合进行理解 具体应用时 可把所有试验结果写出来 看所求事件包含哪几个试验结果 从而判定所给事件的关系 例1某城市有甲 乙两种报纸供居民们订阅 记事件a为 只订甲报纸 事件b为 至少订一种报纸 事件c为 至多订一种报纸 事件d为 不订甲报纸 事件e为 一种报纸也不订 判断下列每对事件是不是互斥事件 如果是 再判断它们是不是对立事件 4 c与e 解析 思维升华 跟踪训练1从40张扑克牌 红桃 黑桃 方块 梅花点数从1 10各10张 中 任取一张 判断下列给出的每对事件 互斥事件为 对立事件为 抽出红桃 与 抽出黑桃 抽出红色牌 与 抽出黑色牌 抽出的牌点数为5的倍数 与 抽出的牌点数大于9 解析 是互斥事件 理由是 从40张扑克牌中任意抽取1张 抽出红桃 和 抽出黑桃 是不可能同时发生的 所以是互斥事件 是互斥事件 且是对立事件 理由是 从40张扑克牌中 任意抽取1张 抽出红色牌 与 抽出黑色牌 两个事件不可能同时发生 但其中必有一个发生 所以它们既是互斥事件 又是对立事件 不是互斥事件 理由是 从40张扑克牌中任意抽取1张 抽出的牌点数为5的倍数 与 抽出的牌点数大于9 这两个事件可能同时发生 如抽得点数为10 因此 二者不是互斥事件 当然也不可能是对立事件 答案 例2某企业生产的乒乓球被奥运会指定为乒乓球比赛专用球 目前有关部门对某批产品进行了抽样检测 检查结果如下表所示 题型二随机事件的频率与概率 解依据公式f 计算出表中乒乓球优等品的频率依次是0 900 0 920 0 970 0 940 0 954 0 951 1 计算表中乒乓球优等品的频率 解由 1 知 抽取的球数n不同 计算得到的频率值不同 但随着抽取球数的增多 频率在常数0 950的附近摆动 所以质量检查为优等品的概率约为0 950 2 从这批乒乓球产品中任取一个 质量检查为优等品的概率是多少 结果保留到小数点后三位 思维升华频率是个不确定的数 在一定程度上频率可以反映事件发生的可能性大小 但无法从根本上刻画事件发生的可能性大小 但从大量重复试验中发现 随着试验次数的增多 事件发生的频率就会稳定于某一固定的值 该值就是概率 跟踪训练2某河流上的一座水力发电站 每年六月份的发电量y 单位 万千瓦时 与该河上游在六月份的降雨量x 单位 毫米 有关 据统计 当x 70时 y 460 x每增加10 y增加5 已知近20年x的值为140 110 160 70 200 160 140 160 220 200 110 160 160 200 140 110 160 220 140 160 1 完成如下的频率分布表 近20年六月份降雨量频率分布表 解在所给数据中 降雨量为110毫米的有3个 为160毫米的有7个 为200毫米的有3个 故近20年六月份降雨量频率分布表为 2 假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同 并将频率视为概率 求今年六月份该水力发电站的发电量低于490 万千瓦时 或超过530 万千瓦时 的概率 故今年六月份该水力发电站的发电量低于490 万千瓦时 或超过530 万千瓦时 的概率为 例3某商场有奖销售中 购满100元商品得1张奖券 多购多得 1000张奖券为一个开奖单位 设特等奖1个 一等奖10个 二等奖50个 设1张奖券中特等奖 一等奖 二等奖的事件分别为a b c 求 1 p a p b p c 题型三互斥事件 对立事件的概率 解析 思维点拨 事件a b c两两互斥 题型三互斥事件 对立事件的概率 例3某商场有奖销售中 购满100元商品得1张奖券 多购多得 1000张奖券为一个开奖单位 设特等奖1个 一等奖10个 二等奖50个 设1张奖券中特等奖 一等奖 二等奖的事件分别为a b c 求 1 p a p b p c 解析 思维点拨 题型三互斥事件 对立事件的概率 例3某商场有奖销售中 购满100元商品得1张奖券 多购多得 1000张奖券为一个开奖单位 设特等奖1个 一等奖10个 二等奖50个 设1张奖券中特等奖 一等奖 二等奖的事件分别为a b c 求 1 p a p b p c 解析 思维点拨 例3某商场有奖销售中 购满100元商品得1张奖券 多购多得 1000张奖券为一个开奖单位 设特等奖1个 一等奖10个 二等奖50个 设1张奖券中特等奖 一等奖 二等奖的事件分别为a b c 求 2 1张奖券的中奖概率 解析 思维点拨 事件a b c两两互斥 例3某商场有奖销售中 购满100元商品得1张奖券 多购多得 1000张奖券为一个开奖单位 设特等奖1个 一等奖10个 二等奖50个 设1张奖券中特等奖 一等奖 二等奖的事件分别为a b c 求 2 1张奖券的中奖概率 解析 思维点拨 解1张奖券中奖包含中特等奖 一等奖 二等奖 设 1张奖券中奖 这个事件为m 则m a b c a b c两两互斥 例3某商场有奖销售中 购满100元商品得1张奖券 多购多得 1000张奖券为一个开奖单位 设特等奖1个 一等奖10个 二等奖50个 设1张奖券中特等奖 一等奖 二等奖的事件分别为a b c 求 2 1张奖券的中奖概率 解析 思维点拨 例3某商场有奖销售中 购满100元商品得1张奖券 多购多得 1000张奖券为一个开奖单位 设特等奖1个 一等奖10个 二等奖50个 设1张奖券中特等奖 一等奖 二等奖的事件分别为a b c 求 2 1张奖券的中奖概率 解析 思维点拨 例3某商场有奖销售中 购满100元商品得1张奖券 多购多得 1000张奖券为一个开奖单位 设特等奖1个 一等奖10个 二等奖50个 设1张奖券中特等奖 一等奖 二等奖的事件分别为a b c 求 3 1张奖券不中特等奖且不中一等奖的概率 思维点拨 解析 思维升华 事件a b c两两互斥 例3某商场有奖销售中 购满100元商品得1张奖券 多购多得 1000张奖券为一个开奖单位 设特等奖1个 一等奖10个 二等奖50个 设1张奖券中特等奖 一等奖 二等奖的事件分别为a b c 求 3 1张奖券不中特等奖且不中一等奖的概率 思维点拨 解析 思维升华 解设 1张奖券不中特等奖且不中一等奖 为事件n 则事件n与 1张奖券中特等奖或中一等奖 为对立事件 例3某商场有奖销售中 购满100元商品得1张奖券 多购多得 1000张奖券为一个开奖单位 设特等奖1个 一等奖10个 二等奖50个 设1张奖券中特等奖 一等奖 二等奖的事件分别为a b c 求 3 1张奖券不中特等奖且不中一等奖的概率 思维点拨 解析 思维升华 例3某商场有奖销售中 购满100元商品得1张奖券 多购多得 1000张奖券为一个开奖单位 设特等奖1个 一等奖10个 二等奖50个 设1张奖券中特等奖 一等奖 二等奖的事件分别为a b c 求 3 1张奖券不中特等奖且不中一等奖的概率 思维点拨 解析 思维升华 求复杂的互斥事件的概率一般有两种方法 一是直接求解法 将所求事件的概率分解为一些彼此互斥的事件的概率的和 二是间接法 先求该事件的对立事件的概率 再由p a 1 p 求解 当题目涉及 至多 至少 型问题 多考虑间接法 例3某商场有奖销售中 购满100元商品得1张奖券 多购多得 1000张奖券为一个开奖单位 设特等奖1个 一等奖10个 二等奖50个 设1张奖券中特等奖 一等奖 二等奖的事件分别为a b c 求 3 1张奖券不中特等奖且不中一等奖的概率 思维点拨 解析 思维升华 跟踪训练3国家射击队的队员为在射击世锦赛上取得优异成绩 正在加紧备战 经过近期训练 某队员射击一次命中7 10环的概率如下表所示 求该射击队员射击一次 1 射中9环或10环的概率 解记事件 射击一次 命中k环 为ak k n k 10 则事件ak彼此互斥 1 记 射击一次 射中9环或10环 为事件a 那么当a9 a10之一发生时 事件a发生 由互斥事件的加法公式得p a p a9 p a10 0 28 0 32 0 60 2 命中不足8环的概率 解设 射击一次 至少命中8环 的事件为b 则表示事件 射击一次 命中不足8环 又b a8 a9 a10 由互斥事件概率的加法公式得p b p a8 p a9 p a10 0 18 0 28 0 32 0 78 故p 1 p b 1 0 78 0 22 因此 射击一次 命中不足8环的概率为0 22 典例 14分 某超市为了了解顾客的购物量及结算时间等信息 安排一名员工随机收集了在该超市购物的100位顾客的相关数据 如下表所示 思想与方法系列19用正难则反思想求互斥事件的概率 已知这100位顾客中一次购物量超过8件的顾客占55 1 确定x y的值 并估计顾客一次购物的结算时间的平均值 规范解答 思维点拨 温馨提醒 易错提示 若某一事件包含的基本事件多 而它的对立事件包含的基本事件少 则可用 正难则反 思想求解 已知这100位顾客中一次购物量超过8件的顾客占55 1 确定x y的值 并估计顾客一次购物的结算时间的平均值 规范解答 思维点拨 温馨提醒 易错提示 解由已知得25 y 10 55 x 30 45 所以x 15 y 20 该超市所有顾客一次购物的结算时间组成一个总体 所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本 顾客一次购物的结算时间的平均值可用样本平均数估计 其估计值为 已知这100位顾客中一次购物量超过8件的顾客占55 1 确定x y的值 并估计顾客一次购物的结算时间的平均值 规范解答 思维点拨 温馨提醒 易错提示 已知这100位顾客中一次购物量超过8件的顾客占55 1 确定x y的值 并估计顾客一次购物的结算时间的平均值 规范解答 思维点拨 温馨提醒 易错提示 要准确理解题意 善于从图表信息中提炼数据关系 明确数字特征含义 已知这100位顾客中一次购物量超过8件的顾客占55 1 确定x y的值 并估计顾客一次购物的结算时间的平均值 规范解答 思维点拨 温馨提醒 易错提示 对统计表的信息不理解 错求x y难以用样本平均数估计总体 已知这100位顾客中一次购物量超过8件的顾客占55 1 确定x y的值 并估计顾客一次购物的结算时间的平均值 规范解答 思维点拨 温馨提醒 易错提示 2 求一位顾客一次购物的结算时间不超过2分钟的概率 将频率视为概率 规范解答 思维点拨 温馨提醒 易错提示 若某一事件包含的基本事件多 而它的对立事件包含的基本事件少 则可用 正难则反 思想求解 2 求一位顾客一次购物的结算时间不超过2分钟的概率 将频率视为概率 规范解答 思维点拨 温馨提醒 易错提示 解记a为事件 一位顾客一次购物的结算时间不超过2分钟 a1 a2分别表示事件 该顾客一次购物的结算时间为2 5分钟 该顾客一次购物的结算时间为3分钟 将频率视为概率得p a1 p a2 2 求一位顾客一次购物的结算时间不超过2分钟的概率 将频率视为概率 规范解答 思维点拨 温馨提醒 易错提示 故一位顾客一次购物的结算时间不超过2分钟的概率为 2 求一位顾客一次购物的结算时间不超过2分钟的概率 将频率视为概率 规范解答 思维点拨 温馨提醒 易错提示 正确判定事件间的关系 善于将所求事件转化为互斥事件的和或对立事件 切忌盲目代入概率加法公式 2 求一位顾客一次购物的结算时间不超过2分钟的概率 将频率视为概率 规范解答 思维点拨 温馨提醒 易错提示 不能正确地把事件a转化为几个互斥事件的和或对立事件 导致计算错误 2 求一位顾客一次购物的结算时间不超过2分钟的概率 将频率视为概率 规范解答 思维点拨 温馨提醒 易错提示 方法与技巧 1 对于给定的随机事件a 由于事件a发生的频率fn a 随着试验次数的增加稳定于概率p a 因此可以用频率fn a 来估计概率p a 2 从集合角度理解互斥事件和对立事件从集合的角度看 几个事件彼此互斥 是指由各个事件所含的结果组成的集合彼此的交集为空集 事件a的对立事件所含的结果组成的集合 是全集中由事件a所含的结果组成的集合的补集 失误与防范 1 正确认识互斥事件与对立事件的关系 对立事件是互斥事件 是互斥中的特殊情况 但互斥事件不一定是对立事件 互斥 是 对立 的必要不充分条件 2 需准确理解题意 特别留心 至多 至少 不少于 等语句的含义 1 一个人打靶时连续射击两次 事件 至少有一次中靶 的互斥事件是 至多有一次中靶 两次都中靶 只有一次中靶 两次都不中靶 2 3 4 5 6 7 8 9 10 1 解析射击两次的结果有 一次中靶 二次中靶 两次都不中靶 故至少一次中靶的互斥事件是两次都不中靶 2 下列命题 将一枚硬币抛两次 设事件m 两次出现正面 事件n 只有一次出现反面 则事件m与n互为对立事件 若事件a与b互为对立事件 则事件a与b为互斥事件 若事件a与b为互斥事件 则事件a与b互为对立事件 若事件a与b互为对立事件 则事件a b为必然事件 其中 真命题是 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 解析对 一枚硬币抛两次 共出现 正 正 正 反 反 正 反 反 四种结果 则事件m与n是互斥事件 但不是对立事件 故 错 对 对立事件首先是互斥事件 故 正确 对 互斥事件不一定是对立事件 如 中两个事件 故 错 对 事件a b为对立事件 则这一次试验中a b一定有一个要发生 故 正确 答案 3 从6个男生2个女生中任选3人 则下列事件中必然事件是 3个都是男生 至少有1个男生 3个都是女生 至少有1个女生 2 4 5 6 7 8 9 10 1 3 解析因为只有2名女生 所以选出的3人中至少有一个男生 4 在5张电话卡中 有3张移动卡和2张联通卡 从中任取2张 若事件 2张全是移动卡 的概率是 那么概率是的事件是 至多有一张移动卡 恰有一张移动卡 都不是移动卡 至少有一张移动卡 2 3 5 6 7 8 9 10 1 4 解析至多有一张移动卡包含 一张移动卡 一张联通卡 两张全是联通卡 两个事件 它是 2张全是移动卡 的对立事件 5 在200件产品中 有192件一级品 8件二级品 则下列事件 在这200件产品中任意选出9件 全部是一级品 在这200件产品中任意选出9件 全部是二级品 在这200件产品中任意选出9件 不全是二级品 其中 是必然事件 是不可能事件 是随机事件 2 3 4 6 7 8 9 10 1 5 6 甲 乙二人玩数字游戏 先由甲任想一数字 记为a 再由乙猜甲刚才想的数字 把乙猜出的数字记为b 且a b 1 2 3 若 a b 1 则称甲 乙 心有灵犀 现任意找两个人玩这个游戏 则他们 心有灵犀 的概率为 2 3 4 5 7 8 9 10 1 6 解析甲想一数字有3种结果 乙猜一数字有3种结果 基本事件总数为3 3 9 设甲 乙 心有灵犀 为事件a 则a的对立事件b为 a b 1 即 a b 2包含2个基本事件 2 3 4 5 7 8 9 10 1 6 p b p a 1 7 口袋内装有一些大小相同的红球 白球和黑球 从中摸出1个球 摸出红球的概率为0 42 摸出白球的概率为0 28 若红球有21个 则黑球有 个 2 3 4 5 6 8 9 10 1 7 解析1 0 42 0 28 0 30 21 0 42 50 50 0 30 15 15 8 已知某运动员每次投篮命中的概率都为40 现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率 先由计算器产生0到9之间取整数值的随机数 指定1 2 3 4表示命中 5 6 7 8 9 0表示不命中 再以每三个随机数为一组 代表三次投篮的结果 经随机模拟产生了如下20组随机数 907966191925271932812458569683431257393027556488730113537989据此估计 该运动员三次投篮恰有两次命中的概率为 2 3 4 5 6 7 9 10 1 8 解析20组随机数中表示三次投篮恰好有两次命中的是191 271 932 812 393 其频率为 0 25 以此估计该运动员三次投篮恰有两次命中的概率为0 25 2 3 4 5 6 7 9 10 1 8 答案0 25 9 黄种人群中各种血型的人所占的百分比如下表所示 2 3 4 5 6 7 8 10 1 9 已知同种血型的人可以输血 o型血可以输给任一种血型的人 任何人的血都可以输给ab型血的人 其他不同血型的人不能互相输血 小明是b型血 若小明因病需要输血 问 1 任找一个人 其血可以输给小明的概率是多少 解对任一人 其血型为a b ab o型血的事件分别记为a b c d 它们是互斥的 2 3 4 5 6 7 8 10 1 9 由已知 有p a 0 28 p b 0 29 p c 0 08 p d 0 35 因为b o型血可以输给b型血的人 故 可以输给b型血的人 为事件b d 根据互斥事件的加法公式 有p b d p b p d 0 29 0 35 0 64 2 任找一个人 其血不能输给小明的概率是多少 2 3 4 5 6 7 8 10 1 9 解方法一由于a ab型血不能输给b型血的人 故 不能输给b型血的人 为事件a c 且p a c p a p c 0 28 0 08 0 36 方法二因为事件 其血可以输给b型血的人 与事件 其血不能输给b型血的人 是对立事件 故由对立事件的概率公式 有p a c p b d 1 p b d 1 0 64 0 36 10 对一批衬衣进行抽样检查 结果如表 2 3 4 5 6 7 8 9 1 10 1 求次品出现的频率 次品率 解次品率依次为0 0 02 0 06 0 054 0 045 0 05 0 05 2 3 4 5 6 7 8 9 1 10 2 记 任取一件衬衣是次品 为事件a 求p a 解由 1 知 出现次品的频率在0 05附近摆动 故p a 0 05 2 3 4 5 6 7 8 9 1 10 3 为了保证买到次品的顾客能够及时更换 销售1000件衬衣 至少需进货多少件 解设进衬衣x件 则x 1 0 05 1000 解得x 1053 故至少需进货1053件 1 一个人掷骰子 均匀正方体形状的骰子 游戏 在他连续掷5次都掷出奇数点朝上的情况下 掷第6次奇数点朝上的概率是 解析无论哪一次掷骰子都有6种情况 其中有3种奇数点朝上 另外3种偶数点朝上 故掷第6次奇数点朝上的概率是 2 3 4 5 1 6 所以a b之间的关系一定为互斥事件 3 4 5 1 6 2 3 一只袋子中装有7个红玻璃球 3个绿玻璃球 从中无放回地任意抽取两次 每次只取一个 取得两个红球的概率为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论