


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数的概念及其运用 教学目标 理解二次函数的概念,并利用 (a0)的意义解答具体题目 提出问题,根据问题给出概念,应用概念解决实际问题 教学重难点关键 1重点:形如 (a0)的式子叫做二次根式的概念; 2难点与关键:利用“ (a0)”解决具体问题 教学过程 一、复习引入 (学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是_问题2:如图,在直角三角形ABC中,AC=3,BC=1,C=90,那么AB边的长是_ 问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_ 老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3因为点在第一象限,所以x= ,所以所求点的坐标( , ) 问题2:由勾股定理得AB= 问题3:由方差的概念得S= . 二、探索新知 很明显 、 、 ,都是一些正数的算术平方根像这样一些正数的算术平方根的式子,我们就把它称二次根式因此,一般地,我们把形如 (a0)的式子叫做二次根式,“ ”称为二次根号 (学生活动)议一议: 1-1有算术平方根吗? 20的算术平方根是多少? 3当a0)、 、 、- 、 、 (x0,y0) 分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0 解:二次根式有: 、 (x0)、 、- 、 (x0,y0);不是二次根式的有: 、 、 、 例2当x是多少时, 在实数范围内有意义? 分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-10, 才能有意义 解:由3x-10,得:x 当x 时, 在实数范围内有意义 三、巩固练习 教材P练习1、2、3 四、应用拓展 例3当x是多少时, + 在实数范围内有意义? 分析:要使 + 在实数范围内有意义,必须同时满足 中的0和 中的x+10 解:依题意,得 由得:x- 由得:x-1 当x- 且x-1时, + 在实数范围内有意义 例4(1)已知y= + +5,求 的值(答案:2)(2)若 + =0,求a2004+b2004的值(答案: ) 五、归纳小结(学生活动,老师点评) 本节课要掌握: 1形如 (a0)的式子叫做二次根式,“ ”称为二次根号 2要使二次根式在实数范围内有意义,必须满足被开方数是非负数 六、布置作业 1教材P8复习巩固1、综合应用52选用课时作业设计3.课后作业:同步训练 第一课时作业设计 一、选择题 1下列式子中,是二次根式的是( ) A- B C Dx 2下列式子中,不是二次根式的是( ) A B C D 3已知一个正方形的面积是5,那么它的边长是( ) A5 B C D以上皆不对 二、填空题 1形如_的式子叫做二次根式 2面积为a的正方形的边长为_ 3负数_平方根 三、综合提高题 1某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少? 2当x是多少时, +x2在实数范围内有意义? 3若 + 有意义,则 =_ 4.使式子 有意义的未知数x有( )个 A0 B1 C2 D无数5.已知a、b为实数,且 +2 =b+4,求a、b的值 第一课时作业设计答案: 一、1A 2D 3B 二、1 (a0) 2 3没有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- it服务英文合同范本
- 劳务对接工地合同范本
- 足浴技师主管合同范本
- 公司代储藏合同范本
- 承保农田合同范本
- 招标居间协议合同范本
- 转让混凝土罐车合同范本
- 离心设备转让合同范本
- 经济代理服务合同范本
- 新手鱼缸采购合同范本
- 2025年职业技能鉴定考试(脱硫值班员·中级/四级)历年参考题库含答案详解(5套)
- 公钥可搜索加密协议:设计原理、安全分析与前沿探索
- 2025年体彩代销者考试题库
- 2025至2030聚乙烯醇缩丁醛(PVB)树脂行业发展趋势分析与未来投资战略咨询研究报告
- 2025年小学语文教师考试题库含答案
- 2025中国医药集团有限公司二级子公司及重点三级子公司高管岗位选聘笔试历年参考题库附带答案详解
- 船舶安全教育培训内容
- 人工动静脉瘘闭塞查房
- 2025年贵州省中考数学试卷及答案
- 学堂在线 积极心理学(上)厚德载物篇 章节测试答案
- 胖东来运营经理培训课件
评论
0/150
提交评论