已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七年级下册数学重点整理 含有未知数的等式叫方程。 等式的基本性质1:等式两边同时加或减同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若ab,c为一个数或一个代数式。则:1a+cb+c2a-cb-c等式的基本性质2:等式的两边同时乘或除以同一个不为0的的数所得的结果仍是等式。 3:若a=b,则b=a(等式的对称性)。 4:若a=b,b=c则a=c(等式的传递性)。【方程的一些概念】 1、方程的解:使方程左右两边相等的未知数的值叫做方程的解。2、解方程:求方程的解的过程叫做解方程。3、移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质4、方程有整式方程和分式方程。 整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。 5、分式方程:分母中含有未知数的方程叫做分式方程。 一、定义:只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。通常形式是kx+b=0(k,b为常数,且k0)。二、一般解法:1、去分母 方程两边同时乘各分母的最小公倍数。2、去括号 一般先去小括号,在去中括号,最后去大括号,可根据乘法分配率。3、移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。 4、合并同类项 将原方程化为ax=b(a0)的形式。5、系数化1 方程两边同时除以未知数的系数,得出方程的解。 三、同解方程:定义:如果两个方程的解相同,那么这两个方程叫做同解方程。 方程的同解原理: 1、方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。 2、方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。做一元一次方程应用题的重要方法:认真审题分析已知和未知的量找一个等量关系列方程解方程 检验写出答四、一元一次方程应用题:一元一次方程解简单应用题的方法和步骤 例2 某面粉仓库存放的面粉运出 15后,还剩余42 500千克,这个仓库原来有多少面粉?1本题中给出的已知量和未知量各是什么? 2已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量) 3若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?上述分析过程可列表如下: 解:设原来有x千克面粉,那么运出了15x千克,由题意,得 x-15x=42 500, 所以 x=50 000答:原来有 50 000千克面粉 (还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程; (1)仔细审题,透彻理解题意即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数; (2)根据题意找出能够表示应用题全部含义的一个相等关系(这是关键一步); (3)根据相等关系,正确列出方程即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等; (4)求出所列方程的解; (5)检验后明确地、完整地写出答案这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义 五、二元一次方程定义:1、一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。 2、二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。 3、二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。4、一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。 消元的方法有两种: 代入消元法例:解方程组 x+y=5 6x+13y=89解:由得x=5-y 把带入,得6(5-y)+13y=89,解得y=59/7把y=59/7带入,得x=5-59/7,即x=-24/7 x=-24/7,y=59/7 这种解法就是代入消元法。 加减消元法例:解方程组x+y=5 x-y=9解:+,得2x=14,即x=7把x=7带入,得7+y=5,解得y=-2x=7,y=-2 这种解法就是加减消元法。 5、二元一次方程组的解有三种情况: 1.有一组解如方程组x+y=5 6x+13y=89的解为x=-24/7,y=59/7。2.有无数组解 如方程组x+y=6 2x+2y=12,因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。 3.无解 如方程组x+y=4 2x+2y=10,因为方程化简后为x+y=5,这与方程相矛盾,所以此类方程组无解。 六、三元一次方程组1、定义:与二元一次方程类似,三个结合在一起的共含有三个未知数的一次方程。 2、三元一次方程组的解法:与二元一次方程类似,利用消元法逐步消元。 典型题析:某地区为了鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨按0.9元/吨收费;超过10吨而不超过20吨按1.6元/吨收费;超过20吨的部分按2.4元/吨收费.某月甲用户比乙用户多缴水费16元,乙用户比丙用户多缴水费7.5元.已知丙用户用水不到10吨,乙用户用水超过10吨但不到20吨.问:甲.乙.丙三用户该月各缴水费多少元(按整吨计算收费)?解:设甲用水x吨,乙用水y吨,丙用水z吨显然,甲用户用水超过了20吨 故甲缴费:0.9*10+1.6*10+2.4*(x-20)=2.4x-23乙缴费:0.9*10+1.6*(y-10)=1.6y-7丙缴费:0.9z 2.4x-23=1.6y-7+16 1.6y-7=0.9z+7.5 化简得 3x-2y=40(1) 16y-9z=145-(2) 由(1)得x=(2y+40)/3 所以设y=1+3k,3k7 当k=4,y=13,x=22,代入(2)求得z=7 当k=5,y=16,代入(2),z没整数解 当k=6,y=19,代入(2),z没整数解 所以甲用水22吨,乙用水13吨,丙用水7吨 甲用水29.8元,乙用水13.8元,丙用水6.3元 七、一元二次方程1、定义:含有一个未知数,并且未知数的最高次数是2的整式方程,这样的方程叫做一元二次方程。由一次方程到二次方程是个质的转变,通常情况下,二次方程无论是在概念上还是解法上都比一次方程要复杂得多。一般形式:ax2+bx+c=0 (a0) 一般解法有四种: 公式法(直接开平方法) 配方法 十字相乘法 因式分解法 1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n0)的 方程,其解为x=m . 例1解方程(1)(3x+1)2=7 (2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=110,所以 此方程也可用直接开平方法解。 (1)解:(3x+1)2=7 (3x+1)2=5 3x+1=(注意不要丢解) x= 原方程的解为x1=,x2= (2)解: 9x2-24x+16=11 (3x-4)2=11 3x-4= x= 原方程的解为x1=, x2= 2配方法:用配方法解方程ax2+bx+c=0 (a0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2 方程左边成为一个完全平方式:(x+ )2= 当b2-4ac0时,x+ = x=(这就是求根公式) 例2用配方法解方程 3x2-4x-2=0 解:将常数项移到方程右边 3x2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2 配方:(x-)2= 直接开平方得:x-= x= 原方程的解为x1=,x2= . 3公式法:把一元二次方程化成一般形式,然后计算判别式=b2-4ac的值,当b2-4ac0时,把各项 系数a, b, c的值代入求根公式x=(b2-4ac0)就可得到方程的根。 例3用公式法解方程 2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 a=2, b=-8, c=5 b2-4ac=(-8)2-425=64-40=240 x= = = 原方程的解为x1=,x2= . 4因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。例4用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x2+3x=0 (3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得 x2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) x-5=0或x+2=0 (转化成两个一元一次方程) x1=5,x2=-2是原方程的解。 (2)解:2x2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) x=0或2x+3=0 (转化成两个一元一次方程) x1=0,x2=-是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。 (3)解:6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) 2x-5=0或3x+10=0 x1=, x2=- 是原方程的解。 (4)解:x2-2(+ )x+4 =0 (4 可分解为2 2 ,此题可用因式分解法) (x-2)(x-2 )=0 x1=2 ,x2=2是原方程的解。 第一章 整式的运算一. 整式1. 单项式由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.一个单项式中,所有字母的指数和叫做这个单项式的次数.2.多项式几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.3.整式单项式和多项式统称为整式.二. 整式的加减1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;指数是1时,不要误以为没有指数;不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);公式还可以逆用: (m、n均为正整数)四幂的乘方与积的乘方1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2. .3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a34底数有时形式不同,但可以化成相同。5要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。6积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。7幂的乘方与积乘方法则均可逆向运用。五. 同底数幂的除法1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a0,m、n都是正数,且mn).2. 在应用时需要注意以下几点:法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0.任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a0,p是正整数), 而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的; 当a0时,a-p的值可能是正也可能是负的,如 , 运算要注意运算顺序. 六. 整式的乘法1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。单项式乘法法则在运用时要注意以下几点:积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;相同字母相乘,运用同底数的乘法法则;只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;单项式乘法法则对于三个以上的单项式相乘同样适用;单项式乘以单项式,结果仍是一个单项式。2单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。单项式与多项式相乘时要注意以下几点:单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;运算时要注意积的符号,多项式的每一项都包括它前面的符号;在混合运算时,要注意运算顺序。3多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。多项式与多项式相乘时要注意以下几点:多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;多项式相乘的结果应注意合并同类项;对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到 七平方差公式1平方差公式:两数和与这两数差的积,等于它们的平方差,即 。其结构特征是:公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;公式右边是两项的平方差,即相同项的平方与相反项的平方之差。八完全平方公式1 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即 ;口决:首平方,尾平方,2倍乘积在中央;2结构特征:公式左边是二项式的完全平方;公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。3在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误。九整式的除法1单项式除法单项式单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;2多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。第二章 平行线与相交线一台球桌面上的角1互为余角和互为补角的有关概念与性质如果两个角的和为90(或直角),那么这两个角互为余角;如果两个角的和为180(或平角),那么这两个角互为补角;注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。二探索直线平行的条件两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。三平行线的特征平行线的特征即平行线的性质定理,共有三条:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。四用尺规作线段和角1关于尺规作图尺规作图是指只用圆规和没有刻度的直尺来作图。2关于尺规的功能直尺的功能是:在两点间连接一条线段;将线段向两方向延长。圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。第三章生活中的数据1科学记数法:对任意一个正数可能写成a10n的形式,其中1a10,n是整数,这种记数的方法称为科学记数法。2利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。3统计工作包括:设定目标;收集数据;整理数据;表达与描述数据;分析结果。第四章 概率1随机事件发生与不发生的可能性不总是各占一半,都为50%。2现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。3了解必然事件和不可能事件发生的概率。必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0P(A)14.了解几何概率这类问题的计算方法事件发生概率= 第五章 三角形一认识三角形 1关于三角形的概念及其按角的分类由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。这里要注意两点:组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。 2关于三角形三条边的关系根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。三角形三边关系的另一个性质:三角形任意两边之差小于第三边。对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。设三角形三边的长分别为a、b、c则:一般地,对于三角形的某一条边a来说,一定有|b-c|ab+c成立;反之,只有|b-c|ab+c成立,a、b、c三条线段才能构成三角形;特殊地,如果已知线段a最大,只要满足b+ca,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|a,那么这三条线段就能构成三角形。 3关于三角形的内角和三角形三个内角的和为180直角三角形的两个锐角互余;一个三角形中至多有一个直角或一个钝角;一个三角中至少有两个内角是锐角。 4关于三角形的中线、高和中线三角形的角平分线、中线和高都是线段,不是直线,也不是射线;任意一个三角形都有三条角平分线,三条中线和三条高;任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。 二图形的全等能够完全重合的图形称为全等形。全等图形的形状和大小都相同。只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。 三全等三角形1关于全等三角形的概念能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 古典音乐之门
- 立秋:季节与文化
- 规划未来的启航
- 2025年餐饮服务管理师职业资格考试试题及答案
- 《殷和殷墟》阅读答案
- 2025年信息技术教育考试试题及答案
- 环境保护应急演练方案
- 仓库保安考试题及答案
- 2025年人工智能伦理与数据隐私保护知识考察试题及答案解析
- 县域路政员招聘面试重点集
- 价值链视角下四川长虹电器股份有限公司营运资金管理分析
- 邮政安保管理办法
- 2025年新修订治安管理处罚法课件
- 2025年度《危险化学品生产企业事故隐患内部报告奖励管理制度》范本+附表
- 医学专业资格认证证明书(5篇)
- 小麦种植技术课件
- 中医适宜技术适应症课件
- 就餐安全课件
- 小区营销的成功案例与经验分享
- 国民经济行业分类代码(2024年版)
- 影视制作行业编剧经验证明书(8篇)
评论
0/150
提交评论