最新人教版八年级下学期数学《勾股定理》知识点归纳以及习题归纳.docx_第1页
最新人教版八年级下学期数学《勾股定理》知识点归纳以及习题归纳.docx_第2页
最新人教版八年级下学期数学《勾股定理》知识点归纳以及习题归纳.docx_第3页
最新人教版八年级下学期数学《勾股定理》知识点归纳以及习题归纳.docx_第4页
最新人教版八年级下学期数学《勾股定理》知识点归纳以及习题归纳.docx_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

此文档收集于网络,如有侵权请联系网站删除希望教育 勾股定理知识点归纳和题型归类一知识归纳勾股定理:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为,斜边为,那么.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是:图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下: 方法一:,化简可证方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积四个直角三角形的面积与小正方形面积的和为大正方形面积为,所以方法三:,化简得证.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形.勾股定理的应用已知直角三角形的任意两边长,求第三边在中,则,知道直角三角形一边,可得另外两边之间的数量关系可运用勾股定理解决一些实际问题.勾股定理的逆定理如果三角形三边长,满足,那么这个三角形是直角三角形,其中为斜边勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以,为三边的三角形是直角三角形;若,时,以,为三边的三角形是钝角三角形;若,时,以,为三边的三角形是锐角三角形;定理中,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,满足,那么以,为三边的三角形是直角三角形,但是为斜边勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形.勾股数能够构成直角三角形的三边长的三个正整数称为勾股数,即中,为正整数时,称,为一组勾股数记住常见的勾股数可以提高解题速度,如;等用含字母的代数式表示组勾股数:丢番图发现的:式子的正整数) 毕达哥拉斯发现的:(的整数)柏拉图发现的:(的整数)勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决题型一:直接考查勾股定理例.在中,已知,求的长已知,求的长题型二:应用勾股定理建立方程例.在中,于,已知直角三角形的两直角边长之比为,斜边长为,则这个三角形的面积为已知直角三角形的周长为,斜边长为,则这个三角形的面积为例.如图中,求的长例4.如图,,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高,另一棵高,两树相距,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了。题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为,判定是否为直角三角形,题型五:勾股定理与勾股定理的逆定理综合应用例8.已知中,边上的中线,求证:。1、在B港有甲、乙两艘渔船,若甲船沿北偏东60方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?2、为美化环境,计划在某小区内用30平方米的草皮铺设一边长为10米的等腰三角形绿地,请你求出这个等腰三角形绿地的另两边长。3、如图,铁路上A、B两站(视为直线上两点)相距25千米,C、D为两个村庄(视为两个点),DAAB于A,CBAB于B,DA=15 千米,CB=10千米,现要在铁路上建设一个土特产收购站E,使得C、D两村到E的的距离相等,则E应建在距A多少千米处?5、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺。如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面。这个水池的深度与这根芦苇的长度分别为多少?典型题训练1 勾股定理1. 在RtABC中,AC=12,AB=20,求BC的长。2. ABC中,若AC=15,BC=13,AB边上的高CD=12,求ABC的周长。2 勾股定理的逆定理1. 已知,在ABC中,A,B,C的对边分别是a,b,c,,求C的度数。2.如图,A,B是公路l(l为东西走向)两旁的两个小村庄,A村到公路l的距离AC=1km,B村到公路l的距离BD=2km,B村在A村的南偏东45方向上(1)求出A,B两村之间的距离;(2)为方便村民出行,计划在公路边新建一个公共汽车站P,要求该站到两村的距离相等,请用尺规在图中作出点P的位置(保留清晰的作图痕迹)。3. 一艘在海上朝正北方向航行的轮船,在航行240海里时方向仪坏了,凭经验,船长指挥船左转90,继续航行70海里,则距出发地250海里,你判断船转弯后是否沿正西方向航行?三最短路径问题1.如图所示是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?2. 有一圆柱形油罐,如图所示,要从A点环绕油罐建梯子,正好到A点的正上方B点,若油罐底面半径是4m,高是7m,3,问梯子最短是多少米?3 折叠问题1. 如图,矩形纸片ABCD中,AB=8cm,把矩形纸片沿直线AC折叠点B落在点E处,AE交DC于点F,若AF=6.25cm,求AD的长。2. 如图,折叠长方形的一边AD,使点D落在BC边的点F处,BC=10cm,AB=8cm,求EC的长。3.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿着直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长。4. 如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B处,点A对应点A,且BC=3,求CN和AM的长。4 网格问题1. 如图,正方形网格中的每个小正方形的边长为1,ABC的三个顶点在格点上,求ABC中AB边上的高。五面积问题1.如图,直线l上有三个正方形a,b,c,若a,c的边长分别为6和8,求b的面积。2.如图所示,在ABC中,AC=10,BC=17,CD=8,AD=6,(1)求BD的长;(2)求ABC的面积。六勾股定理的证明1.一个直立的火柴盒在桌面倒下,启迪人们发现了勾股定理一种新的验证方法如图,火柴盒的一个侧面ABCD倒下到ABCD的位置,连接CC,设AB=a,BC=b,AC=c,请利用四边形BCCD的面积验证勾股定理:。巩固加强训练11已知RtABC中,C=90,a+b=14cm,c=10cm,则RtABC的面积等于13观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=三解答题(共27小题)14a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状17 如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60方向走了100km到达B点,然后再沿北偏西30方向走了100km到达目的地C点,求出A、C两点之间的距离 18如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60的BD方向移动,在距离台风中心200km内的地方都要受到其影响(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?20在ABC中,AB、BC、AC三边的长分别为、,求这个三角形的面积小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC(即ABC三个顶点都在小正方形的顶点处),如图1所示这样不需求ABC的高,而借用网格就能计算出它的面积这种方法叫做构图法(1)ABC的面积为: (2)若DEF三边的长分别为、,请在图2的正方形网格中画出相应的DEF,并利用构图法求出它的面积为 (3)如图3,ABC中,AGBC于点G,以A为直角顶点,分别以AB、AC为直角边,向ABC外作等腰RtABE和等腰RtACF,过点E、F作射线GA的垂线,垂足分别为P、Q试探究EP与FQ之间的数量关系,并证明你的结论(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是 m223(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性问题1:以直角三角形的三边为边向形外作等边三角形,探究S+S与S的关系(如图1)问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S+S与S的关系(如图2)问题3:以直角三角形的三边为直径向形外作半圆,探究S+S与S的关系(如图3)2511世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺每棵树的树顶上都停着一只鸟忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标问这条鱼出现的地方离开比较高的棕榈树的树根有多远?28观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,B=D=90,且B,C,D在同一直线上试说明:ACE=90;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的新英格兰教育日志上),请你写出验证过程31在一次“构造勾股数”的探究性学习中,老师给出了下表: m2 3 3 4 n 1 1 2 3 a22+1232+12 32+2242+32 b 4keep free from/of 使免受(影响;害等);使不含(有害物)6 1224 c2212bother vt. 打扰3212geologist n. 地质学家3222style n. 风格;风度;类型 4232San Francisco n. 圣弗朗西斯科(也称其中m、n为正整数,且mn(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=,b=,c=(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例(美国作家)due to 由于unable adj. 不能的;不会的length n. 长度;长32如图1,在48的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0t8)(1)请在48的网格纸图2中画出t为6秒时的线段PQ并求其长度; (2)当t为多少时PQB是以BP为底的等腰三角形switch n. 开关;转换33阅读下面的情景对话,然后解答问题:(1)理解:根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)若某三角形的三边长分别为1、2,则该三角形(是或不是)奇异三角形(2)探究:若RtABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母)34观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,用你的发现解决下列问题:(1)填空:112=+;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性39明朝数学家程大位在他的著作算法统宗中写了一首计算秋千绳索长度的词西江月:“平地秋千未起,踏板一尺离地送行二步恰竿齐,五尺板高离地”翻译成现代文为:如图,秋千OA静

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论