



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数教学目标:知识与技能1能够作出y=a(x-h)2和y=a(x-h)2+k的图象,并能够理解它与y=ax2的图象的关系,理解a,h和k对二次函数图像的影响。2能正确说出y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。过程与方法1经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程。情感态度与价值观1在小组活动中体会合作与交流的重要性。2进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识。教学难点:理解y=a(x-h)2和y=a(x-h)2+k的图象与y=ax2的图象的关系,理解a、h和k对二次函数图像的影响。教学重点:y=a(x-h)2和y=a(x-h)2+k与y=ax2的图象的关系,y=a(x-h)2+k的图象性质三、教学过程第一环节 复习引入活动内容:提出问题,让学生讨论交流二次函数y=3(x1)2+2的图象是什么形状?它与我们已经作过的二次函数的图象有什么关系?活动目的:首先提出问题,让学生进入问题情境,并引导、启发学生和以前作过的二次函数的图象联系,使学生学会用类比的方法探究未知的知识。实际教学效果:学生已经掌握二次函数y=ax2和y=ax2+c的图象,能够类比猜想二次函数y=3(x1)2+2的图象是一条抛物线。第二环节 合作探究活动内容:1、做一做:先作二次函数y=3(x-1)2的图象,再回答问题。 2、议一议 3想一想1做一做(1)完成下表,并比较3x2与3(x1)2的值,它们之间有什么关系?x-3-2-1012343x23(x-1)2(2)在同一坐标系中作出二次函数 y=3x2和y=3(x-1)2的图象(3)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么? (4)x取哪些值时,函数y=3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x-1)2的值随x的增大而减少? (5)想一想,在同一坐标系中作二次函数y=3(x+1)2的图象,会在什么位置? 2议一议(1)在上面的坐标系中作出二次函数y=3(x+1)2的图象.它与二次函数y=3x2和y=3(x-1)2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么? (2) x取哪些值时,函数y=3(x+1)2的值随x值的增大而增大? x取哪些值时,函数y=3(x+1)2的值随x的增大而减少? (3) 猜一猜,函数y=-3(x-1)2,y=-3(x+1)2 和y=-3x2的图象的位置和形状.(4)请你总结二次函数y=a(x-h)2的图象和性质. 总结二次函数y=a(x-h)2的性质.顶点坐标与对称轴.位置与开口方向.增减性与最值抛物线y=a(x-h)2 (a0)y=a(x-h)2 (a0)顶点坐标(h,0)(h,0)对称轴直线xh直线xh位置在x轴的上方(除顶点外)在x轴的下方(除顶点外)开口方向向上向下增减性在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.最值当xh时,最小值为0当xh时,最大值为0开口大小|a|越大,开口越小3想一想(1)在同一坐标系中作出二次函数y=3x,y=3(x-1)2和y=3(x-1)2+2的图象.(2)二次函数y=3x,y=3(x-1)2和y=3(x-1)2+2的图象有什么关系?它们的开口方向,对称轴和顶点坐标分别是什么?作图看一看 二次函数y=a(x-h)+k与y=ax的关系w 一般地,由y=ax的图象便可得到二次函数 y=a(x-h)+k的图象:y=a(x-h)+k(a0) 的图象可以看成y=ax的图象先沿x轴整体左(右)平移|h|个单位(当h0时,向右平移;当h0时向上平移;当k0)y=a(x-h)2k (a0)顶点坐标(h,k)(h,k)对称轴直线xh直线xh位置由h和k的符号确定由h和k的符号确定开口方向向上向下增减性在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.最值当xh时,最小值为k当xh时,最大值为k活动目的:1、通过填表使不同函数的值在同一表格中呈现出来,便于比较。2、通过在同一坐标系中做出两个函数的图象,使两个函数的图象特点一目了然,启发学生寻找规律,从而得到结论。3、使学生通过讨论将总结的结论进一步加深印象,能够熟练得运用到解决问题的过程中去。实际教学效果:大部分学生对于使用几何画板制作二次函数的图象比较熟练,能够小组合作探究抛物线的性质,但是学生的数学语言归纳还不够精炼。第三环节 练习提高活动内容:1.指出下列函数图象的开口方向对称轴和顶点坐标:2.(1)二次函数y=3(x+1)2的图象与二次函数y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么? (2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有什么关系? (3)对于二次函数y=3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y=3(x+1)2+4呢? 活动目的:对本节知识进行巩固练习。实际教学效果:学生都能够利用归纳的性质完成课堂练习。第四环节 课堂小结活动内容:师生互相交流本节课的学习心得,感受及收获。活动目的:鼓励学生结合本节课的学习谈自己的收获与感想(学生畅所欲言,教师给予鼓励)包括二次函数图象的制作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基础设施加固方案-洞察及研究
- 果实采后病害绿色防控-洞察及研究
- 城市社区园艺生态效益评估-洞察及研究
- 2025钢结构厂房出租合同
- 内存计算技术-洞察及研究
- 2025电脑采购合同书
- 天线极化多样性研究-洞察及研究
- 割草机维护性结构改进-洞察及研究
- 无人机罐体检测应用-洞察及研究
- 心脏电生理药物研发-洞察及研究
- 琦君散文-专业文档
- 企业会计准则、应用指南及附录2023年8月
- 初中数学浙教版九年级上册第4章 相似三角形4.3 相似三角形 全国公开课一等奖
- GA/T 852.1-2009娱乐服务场所治安管理信息规范第1部分:娱乐服务场所分类代码
- 建设项目办理用地预审与选址意见书技术方案
- DLT 5066-2010 水电站水力机械辅助设备系统设计技术规定
- 10kV中压开关柜知识培训课件
- 测绘生产困难类别细则及工日定额
- 货架的技术说明(一)
- GB∕T 20984-2022 信息安全技术 信息安全风险评估方法
- 汽车吊施工方案(完整常用版)
评论
0/150
提交评论