TransCAD“四阶段”操作步骤.doc_第1页
TransCAD“四阶段”操作步骤.doc_第2页
TransCAD“四阶段”操作步骤.doc_第3页
TransCAD“四阶段”操作步骤.doc_第4页
TransCAD“四阶段”操作步骤.doc_第5页
免费预览已结束,剩余26页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

TransCAD四阶段操作步骤2006114.2 出行发生(Trip-Generation) 居民出行发成预测分居民出行产生预测和居民出行吸引预测两部分。其目的是通过建立小区居民出行产生量和吸引量与小区土地利用、社会经济特征等变量之间的定量关系,推算规划年各交通小区的居民出行发生量、吸引量。出行发生有两种单位:一种是以车位单位,另一种是以人为单位。在大城市中交通工具复杂,一般采用人的出行次数为单位,车辆出行于人的出行之间可以相互转换。出行产生预测常用的有两种方法:类型分析法、回归分析法,另外还有增长率法,但由于增长率法过于粗糙已停止使用。下面简要介绍一下回归分析法和类型分析法。回归分析法是在分析小区居民出行产生量、吸引量与其影响因素(如小区人口、劳动力资源数、土地利用、岗位数等指标)相关关系的基础上,得出回归预测模型。函数形式有一元回归、多元回归等。类型分析法是以某一类型为分析单位,根据对出行起决定作用的一些因素将整个对象区域的人划分为诺干类型。在同一类型的人员中,由于主要出行因素相同,各人员的出行次数基本相同,将各类人员单位时间内的出行次数称作“出行率”。并且假定各类人员的出行率到规划年是不变的。这样各类人员数与出行率相乘便得到出行量或吸引量。4.2.1 出行产生(Trip-Production)4.2.1.1 模型原理 出行产生预测采用类型分析法居多,本次结合已有资料亦采用这种方法。家庭分类法中的模型是: Pi=AsNsi=NiAssi (4-1) 式中:Pi 分区i规划年每个单位时间出行产生量; As 全市现年第s类人员的出行率; Nsi第i分区规划年第s类人员的数目; Ni 第i分区规划年各类人员总数目; si第i分区规划年第s类人员的比例。因此必须先确定出行率As、规划年各小区人口总数Ni、各小区各类人员比例si。(1) 规划年各小区人口总数Ni现在已由2.3.2人口预测算出2010年规划区总人口数,因为本次分区无法从政府现有资料上取得各个小区的现有人口数,也无法得到各个小区的人口密度数据,且因本次课题不可能进行各小区的人口调查统计,因此,我们根据出行量与人口数的相关性,据调查统计的各个小区的出行量占总出行量的百分比分配各小区的人口数,即各小区占总人口的百分比等于各小区出行量占总出行量的百分比 ,再由2.3.2人口预测算出2010年规划区总人口数乘以这个百分比,即得个小区人口数。见下表4-1 邯郸市2010年各分区人口预测表 表4-12010各小区人口数预测小区123456789P5049.7 3714.8 4775.3 5611.3 2704.2 2003.5 5531.4 4997.3 2234.1 比例0.070200.051640.0663890.078010.0375950.0278530.07690.0694740.03106小区人口668394917063208742723579326518732156614529571小区101112131415161718P8748.1 7450.5 2238.5 3089.2 2459.7 2543.0 5006.5 3454.5 318.3 比例0.121620.103580.031120.0429480.0341950.0353540.0696020.0480260.004425小区人口115792986172962940889325573365966267457244212(2) 出行率As(假定到未来年不变)见表4-2 不同收入人员的出行率表(2003年) 表4-2收入分类(元/月)0-600600-12001200-18001800以上出行率(次/天)2.492.7752.572.58(3) 各小区各类收入人员比例si(由于规划年限较短,假定到未来年不变) 各小区不同收入人员比例(2003年) 表4-3小区123456789人0-6000.020.020.050.010.10.030.020.010.01员600-12000.210.130.310.140.110.240.130.140.14比1200-18000.350.220.220.150.250.320.220.150.15例1800以上0.420.630.420.70.540.410.630.70.7小区101112131415161718人0-6000.20.20.450.450.320.250.250.20.2员600-12000.320.320.260.260.210.120.120.320.32比1200-18000.280.280.210.210.330.310.310.280.28例1800以上0.20.20.080.080.140.320.320.20.24.2.1.2 软件流程(1)数据准备(输入)规划年各小区人口数(见“deteview2-分区”之字段2010人口数)出行率表(已乘以各小区不同收入人员比例,注意:字段名必须以“R_”开头)见下图4-2:出行产生cross-classification法窗口数据准备图 图4-2(2)操作过程菜单命令:PlanningTrip productionscross-classification(见下图4-3)说明对话框Zone View : 分区Unit Field : 2010人口数Trip Rate View : 不同收入人员出行率(已含收入比?Number of Trip Purposes : 4 Trip Purpose Field : R_0-600 Trip Purpose Field : R_600-1200 Trip Purpose Field : R_1200-1800 Trip Purpose Field : R_1800以上 Number of Classifications : 1 Trip Unit Fields : 1 Classification Field : ID 出行产生cross-classification对话框 图4-3(3)运行结果见图4-4出行产生cross-classification预测结果 图4-44.2.2 出行吸引(Trip-Attract)出行吸引与发生类似,可用类型分析法和回归分析法,有些学者认为出行吸引用类型分析法会得到较为理想的结果,因两者都是可行的,交通吸引方面也用上述方法,所以我们规划过程中假设未来交通吸引和交通生成一致,即各区未来年P和A相等。4.3 方式划分(Mode Split)4.3.1 概述城市中,居民在交通小区之间的出行时通过采用不同的交通方式实现的。目前,城市居民采用的交通方式有步行、自行车、公交系统、出租车、单位车、摩托车、私家车及其他等几类。交通方式分担预测即指在进行了出行分布预测得到全方式OD矩阵之后,确定不同交通方式在小区间OD量中所承担的比例。从目前国内城市交通预测的实践来看,在居民出行方式划分的预测中,一个普遍的趋势是定性和定量分析相结合,在宏观上依据未来国家经济政策、交通政策及相关城市对比较来对未来城市交通结构作出估计,然后在此基础上进行微观预测。因为影响居民出行方式结构,其演变规律很难用单一的数字模型或表达式来描述。尤其是在我国经济水平和居民的物质生活水平还相对落后,居民出行以非弹性出行占绝大部分,居民出行方式可选择余地不大的情况下,传统的单纯的转移曲线法或概率选择法等难于适用。所以在居民出行方式的划分的预测中,一般采用这样的思路:宏观与微观相结合,宏观指导微观预测。首先在宏观上考虑该城市现状居民出行方式结构及其内在原因,定性分析城市未来布局、规模变化趋势,交通系统建设发展趋势,居民出行方式选择决策趋势,并与可比的有关城市进行比较,初步估计规划年城市交通结构的可能取值。其次在微观上,根据城市居民出行调查资料统计计算出不同距离下各种方式分担率,然后,考虑各交通方式特点、优点、缺点、最佳服务距离,不同交通方式之间的竞争转移的可能性以及居民出行选择行为心理等因素,对现状分担率进行修正,以若干次试算,使城市总体交通结构分布值落在第一步所估计的可能取值范围之内。4.3.2 出行方式划分(1)按选择的对象分为:步行 自行车非机动车小汽车(含出租车)全方式摩托、助动车 个人机动交通 普通公交(公共汽、电车)机动车 公共交通 轨道公交(地铁、轻轨等)(2)按服务提供者划分分为:公共汽、电车 城市轨道交通(地铁、轻轨等) 公共交通全方式私人交通-步行、自行车、私家车、单位车个人交通 出租车4.3.3 影响出行方式的因素不同国家或地区饮食及情况千差万别,出行者的出行方式选择的比例结构也就不同,也就是说,影响出行方式划分的因素因国家而异。就我国的实际情况而言,城市交通中,影响人员出行方式选择的主要因素11个,这些因素可归纳为三个方面的特性。(1) 出行者或分区特性 家庭车辆拥有情况。主要指自行车摩托车,以后将会加入小汽车,如意分区为分析单位时,则应采取车辆拥有量的平均值,下同。 出行者年龄。不同年龄阶段的出行者偏好于不同的交通工具,如老人和小孩偏好于公共交通,而较少骑车。 收入:高收入者偏向于坐出租车,而低收入者偏向于公共交通或骑自行车。 分区的可达性。包括两个方面:道路密度和公交网密度。 (2) 出行特性 出行目的。上班和上学偏向于公交车,购物和社交等偏向于出租车或私人交通。 出行距离。近者偏向于步行和非机动车。(3) 交通设施的服务水平 费用。对公共交通,指车票;对个人交通,指汽油费、车耗等。 时间。含座车等车转车以及上下车前后换乘步行的时间。从这个角度来说,具有门对门特点个人交通优于公共交通。 舒适度。包含坐与站的区别,以及座椅的舒适程度站立的宽松程度。 可靠性。指车辆到离站的准时性,显然准时准点的轨道交通优于一般公交汽车。 安全性。4.3.4 方式划分的位置分类根据交通发生、交通分布、交通分配各自的功能特性,这三个工作项段的时间顺序必须依次是:交通发生交通分布交通分配,不能改变。方式划分既可以单独解决,也可以与上述某各子问题中任何一个结合起来同时解决。根据方式划分在整个交通预测过程中的位置分为五类,如图4-5:MSADGA DAGMS类 MSGAD类ADMSG类AMSDG类DMSDG类方式划分的位置分类图 图4-54.3.5 方式划分的模型、方法 方式划分早期主要从集聚的角度研究该问题。所谓集聚方法就是以一批出行者作为分析对象,将有关他们的调查数据先作统计处理,得出平均意义上的量,然后对这些量作进一步的分析研究,如前面的交通发生、交通分布都属于集聚模型。所谓非集聚模型,则是以单个出行者作为分析对象,充分地利用每个调查样本的数据, 求出描述个体行为的概率值。非集聚方法要比集聚方法复杂的多,但其有要求样本小、预测精度高的特点。有关方式划分的模型方法见图 GMS G后MS集计方法 DMS D后MS Logit方式划分 仿真类(Monte-Carlo法) Probit 合并法(Clark法) 逼近类 非集计方法 分裂法(Langdon法) Logit BCL 直接类 BCD GL 改进Logit 合并法(NL) 分层类 分裂法(Langdon法)下面简要介绍常用方法的模型原理:(1)G-MS结合的方式划分 G-MS方法是在与出行发生的同时进行方式划分,因此只能主要考虑其中出行者和分区特性的4个因素(最多还加出行目的因素)作为方式划分的主要依据。这里同样要分出行产生量预测和出行吸引量预测,即分产生量MS预测、吸引量MS预测。)产生量-MS预测如同出行发生量预测,仍可采用类型分析法和线性回归法。类型分析法模型 Pki=aksNsi (4-2)其中:Pki-分区I的第K方式出行产生量aks-全市第s类家庭第k类方式的出行率Nsi-分区i第s类家庭的数目,规划年预测值线性回归模型 pik= +b1kxi1+.+bskxin (4-3)其中:xi1-i分区第j个因素规划年预测值 bjk-第j因素相对于方式k的回归系数,用xij现状调查数据经线性回归获得)吸引量-MS预测 Bik=diswskis (4-4)式中:Bik-分区i的第k方式出行产生量理论值 dis-i分区第s类用地的岗位数 is-i分区第s类用地岗位弹性系数wsk-全市s类用地每个岗位对第k方式出行的吸引率(2) 生成后的方式划分模型因为尚未进行出行量的分布预测,方式划分仍主要以出行者或家庭或分区的特性为依据,多采用线性回归模型。由于已经知道的一个分区总的出行量和吸引量现在就只要预测个方式的比例。例如,以公共交通和个人交通两种方式划分为例,分区的出行产生量由下式决定,回归模型为:公=b+b人x人+ x收+b私x私+b道x道+b公x公 (4-5) 个=1-公式中: 公个-分别为对象分区公共交通和个人交通方式出行产生量的比例 x人、 x收、 x私、 x道、 x公-分别为对象分区规划年人口数、分均收入、人均私车拥有量、 道路网密度、公交网密度 b、b人、 b收b私、 b道、 b公-分别为常数项及相应各因素回归系数分区的出行吸引量可由下式决定,模型为: 公=c+c学x学+c商x商+c自x自+c办x办+c道x道+c公x公 个=1-公式中: 公个-分别为对象分区公共交通和个人交通方式出行产生量的比例x学、 x商、 x自、 x办、 x道、 x公-分别为对象分区规划年学校、商店、工厂、办公岗位数、 道路网密度、公交网密度 c学、 c商、 c自、 c办、 c道、 c公-分别为常数项及相应各因素回归系数由于前面两种方式划分所依据的因数内有考虑到分区之间的服务水平和出行本身的特性,预测结果有一定的局限性。(3) D-MS结合的方式划分很显然,对一次出行而言,使用不同交通工具的出行时间和费用不同,即交通阻抗不同。如果在分析出行分布的同时还考虑交通方式的选择,那么两分区就会根据方式划分成若干种不同的交通阻抗,在出行分布时就根据各自阻抗预测个方式的分布量。 D-MS结合的单约束模型为: tijk= PiAifk(Rij)/Aj fk(Rij) (4-6)式中:tijk-分区i、j之间采用k方式的出行分布量, k=1表示公共交通,k=2表示个人交通 Pi-分区的出行产生量 Ai-分区的出行吸引量 Rij 、fk(Rij) -分区i、j之间的距离和采用方式k的交通阻抗 (4) 分布后的方式划分交通方式划分预测现行的常用方法有转移曲线法、回归模刑法和概率模型法等方法。转移曲线法在大量的统计调查资料的基础上,所得出城市各种交通方式的分担比例与其影响因素之间的关系曲线,被称为转移曲线。影响因素包括交通小区之间的距离、行程时间或合交通方式所需的时间差等。利用转移曲线法可以直接查得各种交通方式在城市交通小区之间出行量中所占的比例。缺点是由于该转移曲线是由现状调查资料绘出,因此无法反映出在未来情况下,特别是当影响因素发生改变时的交通方式分担率的变化。计算公式如下:Tijk = Tij Pk(tij) (4-7)式中:Tijk交通小区i到就第k种出行方式的出行量; Tij同前; Pk(tij) 在出行时间为tij时,居民采用第k种出行方式的出行比例(从距离曲线上得到)。回归模型法 通过建立交通方式分担率与其相关因素之间的函数关系,得出回归方程的方法即回归模型法。一般采用的是线性回归模型。该方法简单易行但粗略,且由于由该方法得出的分担率不能保证在0-1之间。因此使用范围有限。Logit模型法概率模型中最常用的是Logit模型,其函数形式为: Pijk = eUijk /eUijk (4-8)式中: Pijk交通小区i到交通小区j的出行量中,交通方式可k的分担率; Uijk交通小区i到交通小区j的交通方式k的效用函数; n交通方式的个数。其中,Uijk的计算公式为: Uijk = amxijkm (4-9)式中: am 待定系数;xijkm 出行者在从交通小区i到交通小区j采用交通方式k时的影响因素mc 影响因素的个数。除了上述模型以外,还有Probit模型、牺牲量模型等其他模型,由于各有缺陷,模型的应用还十分有限。4.3.6 模型应用在居民出行方式划分的预测中,一个普遍的趋势是定性和定量分析相结合,一般采用这样的思路:宏观与微观相结合,宏观指导微观预测。因为邯郸系中大城市,为发展中的古城,居民出行方式选择不大,考虑到这次交通规划的目的,且本次调查主要为机动车调查,本课题将采用集聚模型的第类方法,即方法。因为本次规划的年限为年,规划时间较短,居民的出行习惯,出行方式不会发生大的变化,因此我们采用同济大学年在邯郸交通研究中所著的现状分析报告中的出行方式比例,见表4-4。 邯郸市主城区出行方式构成 表4-4出行方式比例公共汽车5.6单位公交车0.01出租车1.56摩托车5.57小汽车3.22其他机动车0.6自行车45.81其他非机动车1.33步行36.3将出行发生中所求得的年各小区的出行量乘以各出行方式比例即得各小区各出行方式的出行量,见表4-5,至此方式划分结束。 各小区各出行方式的出行量 表4-6OD2010出行量(人次/天)公共汽车单位公交出租车摩托车小汽车其他机动车自行车其他非机动车步行比例%5.60.011.565.573.220.645.811.3336.311748279790 17 2727 9738 5629 1049 80088 2325 63462 21279087163 13 1995 7124 4119 767 58595 1701 46431 31664749323 17 2597 9273 5360 999 76262 2214 60430 419347110834 19 3018 10776 6230 1161 88629 2573 70230 5927025191 9 1446 5164 2985 556 42467 1233 33651 6695013892 7 1084 3871 2238 417 31838 924 25229 719045810666 19 2971 10609 6133 1143 87249 2533 69136 81723019649 17 2688 9597 5548 1034 78931 2292 62545 9770294314 8 1202 4291 2480 462 35287 1024 27962 1030356016999 30 4736 16908 9775 1821 139061 4037 110192 1125853414478 26 4033 14400 8325 1551 118434 3439 93848 12766824294 8 1196 4271 2469 460 35128 1020 27836 131058245926 11 1651 5894 3408 635 48478 1407 384148 1315 4695 2714 506 38611 1121 305959 1354 4833 2794 521 39748 1154 31496 161708239566 17 2665 9515 5501 1025 78254 2272 62009 171198706713 12 1870 6677 3860 719 54912 1594 43513 1811042618 1 172 615 356 66 5058 147 4008 此阶段未很好结合,请高手删改添加!(最好能添些虚拟数据,在分布后进行。)4.4 出行分布(Trip-Distribution)出行分布预测是将求得的各交通小区规划年的出行产生和吸引量转化为各小区之间的出行交换量的过程,即要得出由出行生成模型所预测的各出行端交通量与区间出行交换量的关系。4.4.1 模型原理分布预测方法大体上分为:平均增长系数法弗尼斯法(furness)弗莱特法(Fratar)单约束增长系数法双约束增长系数法增长系数法概率模型重力模型目前主要用Fratar法、重力模型法,且其中又以重力模型法居多。下面重点介绍上述两种方法。(1) 佛莱特法Tij=tijaibj(Li+Lj)/2 (4-10)佛莱特法认为两交通小区之间的未来出行()分布量不仅与这两区的增长系数有关,而且还与整个调查区内的增长系数有关,这较平均增长系数法有所改进。它基于两个假设:1.未来的出行空间分布与ai和bj均成正比关系;2.未来的出行空间分布与两地间的出行阻挠因素成反比关系,此处出行的阻挠因素可表示为(Li+Lj)/2,其中Li、Lj为地区性因素。 Li=Lj= (4-11)佛莱特法需用迭代方法反复修正和计算,直到收敛在误差范围之内为止。弗莱特法属于增长率法,其最大的一个缺点是没有引入各个分区之间的交通阻抗因素。他对近期或肯定至规划年整个交通网络上的家庭阻抗都没有什么变化的出行分布问题时可用的。但一般对象区域的交通阻抗都会因交通设施的改进货流量的增加而不断变化,这就要求在进行分布预测时加入交通阻抗的因素。(2) 重力模型顾名思义,重力模型借鉴了牛顿万有引力定律来描述城市居民的出行行为,他考虑了两个小区的吸引强度和吸引阻抗因素。他的基本假设为:交通小区i到交通小区j的出行分布量与小区i的出行发生量、小区j的出行吸引量成正比,与小区i和小区j之间的出行阻抗成反比。重力模型是综合分布模型中采用最广泛的一种。所谓综合模型,就是对现有的交通资料进行分析,希望得到出行产生和出行吸引以及出行阻抗的综合关系。交通阻抗可表示为:出行距离的长短、行程时间的快慢及费用的大小等。其考虑了出行费用是前面的模型所不能达到的。重力模型法有三类:无约束重力模型、单约束重力模型和双约束重力模型。无约束重利模型形式简单、便于计算,但精度不够,所以也很少采用。单约束重力模型它考虑的因素较增长系数法更全面,对交通阻抗参数的变化能敏感地反应,在没有完整的现状OD调查资料时也能使用,计算、精度间于但约束和双约束重力模型之间。双约束重力模型,要求数据较多,计算复杂,精度高。运用TransCAD,本阶段采用双约束重力模型。 (1)模型表达: Tij=K Loi LDj /f(Rij) (4-12)式中: Loi LDj-表土地使用 f(Rij) -摩擦因子用出行产生量Pi和吸引量Aj表达土地使用,得:Rijb 幂函数eRij 指数函数Rijb eRij复合型函数Tij=K PiAj /f(Rij) (4-13)式中 f(Rij)=本课程采用双约束重力模型,摩擦因子函数采用幂函数(Inverse power function),即用Ki Kj代替K,f(Rij)= Rijb得: Tij= KiKj PiAj / Rijb (4-14)式中 St. Ki=(KjAj/Rijb)-1 - Kj= (KiPi/Rijb)-1 - (2)模型标定1)给b一个初值,令b=12)用迭代法求Ki, Ki 令列约束系数Kj=1将列约束Kj代入式 求各行约束系数Ki将列约束Ki代入式 求各行约束系数Kj比较先后两次的行约束系数、列约束系数变化,要求相对误差3%. 否则继续迭代。3)将求得的约束Ki Ki代入模型用现状分布表求的理论分布表4)计算实际分布表的平均交通阻抗R实和理论分布表的平均交通阻抗R理 求5)当0 即R理R实时,可推出:理论分布量实际分布量,b值偏大。令b=b/2当R实时,可推出:理论分布量实际分布量,b值偏小。令b=2b返回步骤2.4.4.2 居民出行转换为车辆出行 因为本次调查主要成果为机动车表,而上面出行预测出的是2010年的各小区每天人口总出行次数,所以在进行交通分布前须将2010年的各小区每天人口总出行次数转换为各小区的高峰小时标准汽车出行量。邯郸市各交通方式分担比例如下表“比例”一行所列(资料来源:现状分析报告);早高峰小时交通量占一天交通量19.63%(资料来源:现状分析报告) 按下式计算各值:各区各交通方式所承担出行量(人次)=各区出行量*方式比例各区出行的标准汽车数(PCU/天)=(各交通方式*相应换算系数)见表4-7各区高峰小时出行量(PCU/PH)=各区出行的标准汽车数(PCU/天)*19.63%计算结果见表4-8: 城市道路交通量调查小汽车为标准的换算系数表 表4-7车辆类型换算系数小汽车1.0小型载重车1.535载重车2.05以上载重汽车2.5中、小型公共汽车2.5大型公共汽车、无轨电车3.0摩托车0.8三轮车0.5自行车0.4 居民出行与车辆出行转换表 表4-8OD2010出行量(人次/天)公共汽车单位公交车出租车摩托车小汽车其他机动车自行车其他非机动车步行PCU/天PCU/PH比例(%)5.60.01.65.63.20.645.81.336.3合乘系数1231.5222111174827.0 9790.3 17.5 2727.3 9737.9 5629.4 1049.0 80088.2 2325.2 63462.2 33548.4 6586 2127908.0 7162.8 12.8 1995.4 7124.5 4118.6 767.4 58594.7 1701.2 46430.6 24544.9 4818 3166474.0 9322.5 16.6 2597.0 9272.6 5360.5 998.8 76261.7 2214.1 60430.1 31945.5 6271 4193471.0 10834.4 19.3 3018.1 10776.3 6229.8 1160.8 88629.1 2573.2 70230.0 37126.1 7288 5 92702.0 5191.3 9.3 1446.2 5163.5 2985.0 556.2 42466.8 1232.9 33650.8 17789.1 3492 669501.0 3892.1 7.0 1084.2 3871.2 2237.9 417.0 31838.4 924.4 25228.9 13336.9 2618 7190458.0 10665.6 19.0 2971.1 10608.5 6132.7 1142.7 87248.8 2533.1 69136.3 36547.9 7174 8172301.0 9648.9 17.2 2687.9 9597.2 5548.1 1033.8 78931.1 2291.6 62545.3 33063.7 6490 977029.0 4313.6 7.7 1201.7 4290.5 2480.3 462.2 35287.0 1024.5 27961.5 14781.5 2902 10303560.0 16999.4 30.4 4735.5 16908.3 9774.6 1821.4 139060.8 4037.3 110192.3 58251.6 11435 11258534.0 14477.9 25.9 4033.1 14400.3 8324.8 1551.2 118434.4 3438.5 93847.8 49611.4 9739 1276682.0 4294.2 7.7 1196.2 4271.2 2469.2 460.1 35128.0 1019.9 27835.6 14714.9 2889 13105824.0 5926.1 10.6 1650.9 5894.4 3407.5 634.9 48478.0 1407.5 38414.1 20307.1 3986 1484285.0 4720.0 8.4 1314.8 4694.7 2714.0 505.7 38611.0 1121.0 30595.5 16173.9 3175 1586766.0 4858.9 8.7 1353.5 4832.9 2793.9 520.6 39747.5 1154.0 31496.1 16650.0 3268 16170823.0 9566.1 17.1 2664.8 9514.8 5500.5 1024.9 78254.0 2271.9 62008.7 32780.1 6435 17119870.0 6712.7 12.0 1870.0 6676.8 3859.8 719.2 54912.4 1594.3 43512.8 23002.5 4515 1811042.0 618.4 1.1 172.3 615.0 355.6 66.3 5058.3 146.9 4008.2 2118.9 416 规划年各小区的预测出行量即为表4-8中PCU/PH一列,将这列值填至TransCAD 分区层的数据dataview中,字段名为2010PCU_P。4.4.3 程序流程流程一:求阻抗矩阵Rij(Impedance Matrix)交通阻抗可表示为:出行距离的长短、行程时间的快慢及费用的大小等。为更真实地反映交通阻抗,本次规划交通阻抗采用相对行程时间表示。小区之间的阻抗相对行程时间越小表示小区之间阻抗越小,越大表示小区之间阻抗越大,因此以相对行程时间为路权值求各小区之间的最短路径(Shortest Path)其值即为小区之间的阻抗Rij。(1) 数据准备创建路网 步骤:(已建路线层和分区层)a. 创建小区质心。在分区层上,ToolExport调出图4-6对话框 框中各选择如图示,Export对话框 图4-6注意:格式选standard geographic, 点OK,保存。质心继承分区所有属性。b.加载。在路网(.dbd)层上,加载分区层、质心层。c.建索引(Index)。在Connect之前一定要在“路网Endpoint”层的Dataview上新加一字段取名为index,保存。因为连接后质心作为路网Endpoint(line endpoint) 层上的一个普通的点。建立Index以便路网Endpoint层上的质心点ID与质心层的质心ID对应,用以ID转换。d.连接(Connect)。将质心点连接到路网。在质心层上ToolsMap EditingConnect调出其对话框图4-7Setting卡上:如图。Fill卡:Node field里选index;Fill with里选IDs from 质心layer. (这便将质心层上质心ID填充进index,以便和路网Endpoint层上的质心点ID建立对应关系。)点OK。质心连接完成。路网(dbd)已显示连接。Connect调出其对话框 图4-7a Connect调出其对话框 图4-7be.填充连接后新增路段的值。将其通行能力设为无穷大(大数即可),通行时间设为很小的值。f.创建路网(Create)。在路网层上,Networks/PathsCreate调出其对话框,图4-8read length from 下拉菜单选择Travel_time字段合适将Optional Fields里的内容全选,连接后的路网将继承这些属性。点OK,保存Network。至此,路网创建完成!做选择集。点工具栏(tools)的选择图标(select by pointing)或在dataview里选择质心点,将其作为一个选择集。以便下一步输入,让软件找到这些质心点。路网上各路段的相对行程时间Create Networks对话框 图4-8 相对行程时间=Length /平均车速(2) 操作过程 Networks/PathsMultiple paths调出其对话框 图4-9,在Minimize里选相对行程时间;From、To里选Selection 。点N

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论