


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学专题教学研习本资源由专人彭剑平整理,未经允许不得复制影印,资源仅供教师研习,欢迎批评指正说明:Level A为基本(要求熟悉掌握),Level B为高考(常考规律总结),Level C为竞赛(拓展的课外知识)注: 本资源仅提供pdf版本 交流: 博客:/ansontop 邮箱:anson_专题: 数列通项公式的求法(选学)& 基本知识点(Level A)交流、素材提供 博客:/ansontop 邮箱:anson_& 拓展知识点(Level B)【1】攻克数列不等式证明问题的若干策略策略一:放缩法数列问题的两大特点是求和与递推,因此要证关于项和或通项的不等式,可先寻找关于通项或相邻两项的不等式,这便是放缩的思想,即先放缩再求和或迭代(1)利用最简单的不等式关系进行放缩(2)利用由条件得到的不等关系进行放缩(3)利用由基本不等式得到的不等关系进行放缩(4)利用由倒数(函数单调性)得到的不等关系进行放缩(5)利用由二项式定理得到的不等关系进行放缩策略二:利用数列的单调性(1)由定义确定数列的单调性(2)构造函数、利用导数确定数列的单调性策略三:数学归纳法& 深化知识点(Level C)【1】数列通项求解思路(2)续(1)类型2 (常数、)变形为:类型3 (常数、,且)变形为:类型4 (常数、,且)变形为: 递推式为与的关系式 (或),可利用进行求解 递推式为 (),可变形为:;或 (),可变形为: 对于数列,(是常数且,)其特征方程为,变形为 (*)若(*)有二异根,则可令(其中是待定常数),代入,的值可求得值这样数列是首项为,公比为的等比数列,于是这样可求得若(*)有二重根,则可令(其中是待定常数),代入,的值可求得值这样数列是首项为,公差为的等差数列,于是这样可求得 递推式为(,),可变形为 递推式为(其中,均为常数),可把原递推公式转化为,其中,满足,特征方程为 (*)若(*)有二异根,则可令 (,是待定常数)若(*)有二重根,则可令 (,是待定常数)归纳:(,为二阶常数)用特证根方法求解具体步骤:第1步:写出特征方程(对应,对应),并设二根,;第2步:若(*)有二异根,则可令 (,是待定常数)若(*)有二重根,则可令 (,是待定常数)第3步:由初始值,确定,(3)双数列型可根据所给两个数列递推公式的关系,灵活采用累加、累乘、化归等方法求解说明:一些特殊数列,如周期数列,不一定能求通项,但由递推关系,可得出周期等有效量,同样也可确定数列中的与对应关系;阶差数列,如二阶等差等比数列等;还有些数列,只是起到过渡作用,如数列,通过数列建立联系,这时就不一定可求通项,其实也不一定要求出来& 高阶阅读
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初三英语教学课件
- 钣金磨具课件
- 2025年数字货币对货币政策传导机制的国际合作前景研究报告
- 钢铁卷板基础知识培训课件
- 知识产权培训宣讲总结课件
- 2025年电商市场分析面试题及答案
- 潞城知识园教育培训课件
- 2025年宠物摄影摄像师中级模拟试题
- 2025年CISP云计算安全面试题集
- 2025年券商入职测试题库及答案
- JJF 1002-2010国家计量检定规程编写规则
- GB/T 6663.1-2007直热式负温度系数热敏电阻器第1部分:总规范
- GB/T 6344-2008软质泡沫聚合材料拉伸强度和断裂伸长率的测定
- GB/T 3836.4-2021爆炸性环境第4部分:由本质安全型“i”保护的设备
- GA/T 1163-2014人类DNA荧光标记STR分型结果的分析及应用
- 蒸汽发生器设计、制造技术要求
- 全套课件-水利工程管理信息技术
- 施工员钢筋工程知识培训(培训)课件
- 《阿房宫赋》全篇覆盖理解性默写
- 学校体育学(第三版)ppt全套教学课件
- 住建部《建筑业10项新技术(2017版)》解读培训课件
评论
0/150
提交评论