时间序列分析课程设计报告.docx_第1页
时间序列分析课程设计报告.docx_第2页
时间序列分析课程设计报告.docx_第3页
时间序列分析课程设计报告.docx_第4页
时间序列分析课程设计报告.docx_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

时间序列课程设报告 学院 数学与信息科学系 专业 应用数学专业 姓名 刘 钦 学号 541010020129 分数 2013年 6 月 平稳序列分析: 选用数据为:股票市场2003年初深证A股的每日成交额:时间深证A股时间深证A股时间深证A股时间深证A股2003010224.29 2003012348.56 2003022431.32 2003031738.09 2003010319.76 2003012447.21 2003022550.13 2003031838.19 2003010622.76 2003012756.24 2003022636.68 2003031931.53 2003010724.88 2003012842.99 2003022736.65 2003032032.07 2003010833.48 2003012949.63 2003022832.23 2003032130.61 2003010963.37 2003021030.19 2003030339.55 2003032424.89 2003011058.17 2003021130.49 2003030436.36 2003032525.90 2003011334.69 2003021248.04 2003030539.85 2003032627.19 20030114113.82 2003021358.70 2003030640.94 2003011598.96 2003021442.91 2003030736.44 2003011671.03 2003021746.58 2003031037.37 2003011767.77 2003021834.81 2003031127.47 2003012054.13 2003021934.42 2003031230.88 2003012156.80 2003022038.24 2003031328.86 2003012250.42 2003022147.08 2003031432.97 源程序:data pw;input x;t=_n_;cards;24.29 19.76 22.76 24.88 33.48 63.37 58.17 34.69 113.82 98.96 71.03 67.77 54.13 56.80 50.42 48.56 47.21 56.24 42.99 49.63 30.19 30.49 48.04 58.70 42.91 46.58 34.81 34.42 38.24 47.08 31.32 50.13 36.68 36.65 32.23 39.55 36.36 39.85 40.94 36.44 37.37 27.47 30.88 28.86 32.97 38.09 38.19 31.53 32.07 30.61 24.89 25.90 27.19 ;proc print data=pw;proc gplot ;plot x*t;symbol c=black v=star i=join;run;proc arima data=pw;identify var=x nlag=22 minic p=(0:5) q=(0:5);estimate p=1;forecast lead=4 id=t out=pwr;run; proc gplot data=pwr;plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay;symbol1 c=black i=none v=star;symbol2 c=red i=join v=none;symbol3 c=green i=join v=none l=32;run; 1.序列预处理:序列的时序图显示2003年初深证A股的每日成交额无明显的趋势和周期,波动稳定。自相关图显示出自相关系数具有明显的短期相关,2阶结尾性。Autocorrelation Check for White NoiseToLagChi-SquareDFPrChiSq- Autocorrelation-644.556.00010.6110.4350.3940.2260.0920.0621245.3812ChiSq- Autocorrelation-63.6640.4533-0.020-0.0920.2030.019-0.0840.070125.48100.8566-0.099-0.0560.074-0.0350.006-0.087189.57160.8882-0.0430.1950.024-0.0980.057-0.0182414.14220.8963-0.0630.081-0.007-0.1210.138-0.065残差白噪声检验显示延迟6阶、12阶、18阶、24阶LB检验统计量的P值均显著大于0.05,所以该AR(2)模型显著有效。Conditional Least Squares EstimationParameterEstimateStandardErrort ValueApproxPrtLagMU39.531965.532867.14ChiSq- Autocorrelation-64.3550.4998-0.070-0.0300.2310.028-0.0720.095126.03110.8714-0.091-0.0530.078-0.0470.019-0.074189.78170.9127-0.0540.1800.011-0.0970.065-0.0182415.08230.8917-0.0690.077-0.005-0.1350.143-0.080残差白噪声检验显示延迟6阶、12阶、18阶、24阶LB检验统计量的P值均显著大于0.05,所以该AR(2)模型显著有效。Conditional Least Squares EstimationParameterEstimateStandardErrort ValueApproxPrtLagMU40.428904.850098.34.00010AR1,10.625290.110945.64h的值为0.0001,显示残差序列高度自相关。为了充分提取相关信息,我们需要对残差序列进行再次拟合。4.回归误差分析:残差自相关图显示残差序列有显著的相关关系。逐步回归向后消除报告显示除延迟5阶的序列值不显著相关外,延迟其他阶数的序列值均具有显著的自相关性,所以均保留。输出的自回归模型为:t=0.581476*t-1-0.545859*t-2+0.304447*t-3-0.291615*t-4+at5.最终拟合模型:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论