




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
词清平乐禁庭春昼,莺羽披新绣。百草巧求花下斗,只赌珠玑满斗。日晚却理残妆,御前闲舞霓裳。谁道腰肢窈窕,折旋笑得君王。椭圆第二定义学法指导:以问题为诱导,结合图形,引导学生进行必要的联想、类比、化归、转化.复习回顾问题推广引出课题典型例题课堂练习归纳小结教学目标知识目标:椭圆第二定义、准线方程;能力目标:1使学生了解椭圆第二定义给出的背景; 2了解离心率的几何意义; 3使学生理解椭圆第二定义、椭圆的准线定义; 4使学生掌握椭圆的准线方程以及准线方程的应用; 5使学生掌握椭圆第二定义的简单应用;情感与态度目标:通过问题的引入和变式,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值.教学重点:椭圆第二定义、焦半径公式、准线方程;教学难点:椭圆的第二定义的运用;教具准备:与教材内容相关的资料。教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神教学过程: 学生探究过程:复习回顾1椭圆的长轴长为 18 ,短轴长为 6 ,半焦距为,离心率为,焦点坐标为,顶点坐标为,(准线方程为).2短轴长为8,离心率为的椭圆两焦点分别为、,过点作直线交椭圆于A、B两点,则的周长为 20 .引入课题【习题4(教材P50例6)】椭圆的方程为,M1,M2为椭圆上的点 求点M1(4,2.4)到焦点F(3,0)的距离 2.6 . 若点M2为(4,y0)不求出点M2的纵坐标,你能求出这点到焦点F(3,0)的距离吗?解:且代入消去得【推广】你能否将椭圆上任一点到焦点的距离表示成点M横坐标的函数吗?解:代入消去 得问题1:你能将所得函数关系叙述成命题吗?(用文字语言表述)椭圆上的点M到右焦点的距离与它到定直线的距离的比等于离心率问题2:你能写出所得命题的逆命题吗?并判断真假?(逆命题中不能出现焦点与离心率)动点到定点的距离与它到定直线的距离的比等于常数的点的轨迹是椭圆【引出课题】椭圆的第二定义当点与一个定点的距离和它到一条定直线的距离的比是常数时,这个点的轨迹是椭圆定点是椭圆的焦点,定直线叫做椭圆的准线,常数是椭圆的离心率对于椭圆,相应于焦点的准线方程是根据对称性,相应于焦点的准线方程是对于椭圆的准线方程是可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义由椭圆的第二定义可得:右焦半径公式为;左焦半径公式为典型例题例1、求椭圆的右焦点和右准线;左焦点和左准线;解:由题意可知右焦点右准线;左焦点和左准线变式:求椭圆方程的准线方程;解:椭圆可化为标准方程为:,故其准线方程为小结:求椭圆的准线方程一定要化成标准形式,然后利用准线公式即可求出例2、椭圆上的点到左准线的距离是,求到左焦点的距离为 .变式:求到右焦点的距离为 .解:记椭圆的左右焦点分别为到左右准线的距离分别为由椭圆的第二定义可知:又由椭的第一定义可知:另解:点M到左准线的距离是2.5,所以点M到右准线的距离为小结:椭圆第二定义的应用和第一定义的应用例1、 点P与定点A(2,0)的距离和它到定直线的距离的比是1:2,求点P的轨迹;解法一:设为所求轨迹上的任一点,则由化简得,故所的轨迹是椭圆。解法二:因为定点A(2,0)所以,定直线所以解得,又因为故所求的轨迹方程为变式:点P与定点A(2,0)的距离和它到定直线的距离的比是1:2,求点P的轨迹;分析:这道题目与刚才的哪道题目可以说是同一种类型的题目,那么能否用上面的两种方法来解呢?解法一:设为所求轨迹上的任一点,则由化简得配方得,故所的轨迹是椭圆,其中心在(1,0)解法二:因为定点A(2,0)所以,定直线所以解得,故所求的轨迹方程为问题1:求出椭圆方程和的长半轴长、短半轴长、半焦距、离心率;问题2:求出椭圆方程和长轴顶点、焦点、准线方程;解:因为把椭圆向右平移一个单位即可以得到椭圆所以问题1中的所有问题均不变,均为长轴顶点、焦点、准线方程分别为:,;长轴顶点、焦点、准线方程分别为:,;反思:由于是标准方程,故只要有两上独立的条件就可以确定一个椭圆,而题目中有三个条件,所以我们必须进行检验,又因为另一方面离心率就等于这是两上矛盾的结果,所以所求方程是错误的。又由解法一可知,所求得的椭圆不是标准方程。小结:以后有涉及到“动点到定点的距离和它到定直线的距离的比是常数时”最好的方法是采用求轨迹方程的思路,但是这种方法计算量比较大;解法二运算量比较小,但应注意到会不会是标准方程,即如果三个数据可以符合课本例4的关系的话,那么其方程就是标准方程,否则非标准方程,则只能用解法一的思维来解。例4、设AB是过椭圆右焦点的弦,那么以AB为直径的圆必与椭圆的右准线( )A.相切 B.相离 C.相交 D.相交或相切分析:如何判断直线与圆的位置关系呢?解:设AB的中点为M,则M即为圆心,直径是|AB|;记椭圆的右焦点为F,右准线为;过点A、B、M分别作出准线的垂线,分别记为由梯形的中位线可知又由椭圆的第二定义可知即又且故直线与圆相离例5、已知点为椭圆的上任意一点,、分别为左右焦点;且求的最小值分析:应如何把表示出来解:左准线:,作于点D,记由第二定义可知: 故有所以有当A、M、D三点共线时,|MA|+|MD|有最小值:即的最小值是变式1:的最小值;解:F1AMD变式2:的最小值;解:巩固练习1已知 是椭圆 上一点,若 到椭圆右准线的距离是 ,则 到左焦点的距离为_2若椭圆 的离心率为 ,则它的长半轴长是_答案:1 21或2教学反思1椭圆第二定义、焦半径公式、准线方程;2椭圆定义的简单运用;3离心率的求法以及焦半径公式的应用;课后作业1.例题5的两个变式;2. 已知 , 为椭圆 上的两点, 是椭圆的右焦点若 , 的中点到椭圆左准线的距离是 ,试确定椭圆的方程解:由椭圆方程可知 、两准线间距离为 设 , 到右准线距离分别为 , ,由椭圆定义有 ,所以 ,则 , 中点 到右准线距离为 ,于是 到左准线距离为 , ,所求椭圆方程为 思考:1方程表示什么曲线?解:;即方程表示到定点的距离与到定直线的距离的比常数(且该常数小于1)方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《社团贷款管理办法》
- 语音包业务管理办法
- 西宁机动车管理办法
- 仓储物流物资管理办法
- 心脏康复生活质量影响-洞察及研究
- 红薯储藏期管理办法
- 产品改进计划管理办法
- 产品对外报价管理办法
- 营口特殊资产管理办法
- 装修工程绿色管理办法
- 人教版(2019)必修三 Unit 3 Diverse Cultures Listening and Talking课件
- 四川省眉山市各县区乡镇行政村村庄村名居民村民委员会明细
- 幼小可爱卡通家长会通用
- 建筑结构试验知识点总结
- 中西医治疗高血压课件
- TOP100经典绘本课件-《大卫上学去》
- 日本川崎市武藏小杉格林木(GrandTree)创新型购物中心调研分析报告课件
- 部编人教版七年级语文上册《朝花夕拾》
- 菌种购入、使用、销毁记录表单
- 初中英语教研组团队建设PPT课件
- 六年级上学期综合实践课教案
评论
0/150
提交评论