反比例函数图像教案.doc_第1页
反比例函数图像教案.doc_第2页
反比例函数图像教案.doc_第3页
反比例函数图像教案.doc_第4页
反比例函数图像教案.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

反比例函数图像教案 数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。下面是关于反比例函数图像教案,希望大家认真阅读! 教学目标: 知识与技能: 1.理解并掌握反比例函数的概念,根据实际问题能列出反比例函数关系式;。 2.能判断一个给定的函数是否为反比例函数。 过程与方法: 通过探索现实生活中数量间的反比例关系,体会和认识反比例函数式刻画现实世界中特定数量关系的一种数学模型,进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化的观点。 情感、态度与价值观: 经历反比例函数的形成过程、使学生体验函数是描述变量间对应关系的重要数学模型,培养学生观察、推理、分析的能力和合作交流的意识、体验数形结合的思想。 教学重点、难点设计: 对于反比例函数的概念的形成过程是这节课的重点,也是难点,教学中要重点联系实际,让概念在实际的背景下形成,使学生体会到反比例函数能够反映实际事物的变化规律,同时通过与一次函数、正比例函数的类比更好地认识和理解反比例函数,教学中进行类比、变化与对应等数学思想的渗透。 教学准备与方法设计: 通过多媒体教学的应用,让概念和规律方法的获得主要以学生自主探究为主,通过实际问题的分析讨论得到反比例函数的概念,通过与一次函数、正比例函数的类比获得反比例函数解析式的求法,通过练习、巩固学生的知识,检验规律的正确性。 学生知识状况分析 由于本节课比较抽象,学生理解起来比较困难,因此,在学习反比例函数概念的过程中,充分利用学生已有的生活经验和背景知识,创设丰富的现实情境,引导学生关注问题中变量的相依关系及变化规律,并逐步加深理解.教学中要提供直观背景展现反比例函数的经验,在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义,在活动中,教师应注意提供思考或研究问题的方向. 教学过程 一:创设问题情境,引入新课 活动目的给学生设置疑问,激发学生学习兴趣。 我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b其中k,b为常数且k0,正比例函数的表达式为y=kx,其中k为不为零的常数,但是在现实生活中,并不是只有这两种类型的表达式,如为vt=1200,则t=中,t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘. 二:新课讲解 活动目的在探索具体问题中数量关系和变化规律的基础上抽象出数学概念,结合具体情境领会反比例函数作为一种数学模型。 1.引入我们今天要学习的是反比例函数, 2.探究归纳 经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式. 问题1从A地到B地的路程为1200km,某人开车要从A地到B地,求汽车的速度v(km/h)和时间t(h)之间的关系式。 从这个关系式中发现: 1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;速度减小了,时间增大. 2.自变量v的取值是v0. 问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长y(米)与x的函数关系式.分析根据矩形面积可xy=24,即 从这个关系中发现: 1.当矩形的面积一定时,矩形的一边是另一边的反比例函数.即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大; 2.自变量的取值是x0. 上述几个函数都具有的形式,一般地,形如(k是常数,k0)的函数叫做反比例函数 说明1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即,k是常数,且k0;反比例函数,则xy=k,k是常数,且k0.可利用定义判断两个量x和y满足哪一种比例关系. 2.反比例函数的解析式又可以写成:(k是常数,k0). 3.要求出反比例函数的解析式,只要求出k即可. 三.互动平台 (1)每人写三个反比例函数,请同桌指出其中k的值. (2)小组讨论:举出实际生活学习中具有反比例关系的例子。 四、做一做多媒体课件演示 1.下列函数关系中,哪些是反比例函数? (1)(2)(3)(4)(5)(6) 2.写出下列函数关系式,并指出它们是什么函数? (1)三角形的面积S是常数时,它的底边长y和这条底上的高x的函数关系; (2)食堂存煤15吨,可使用的天数t和平均每天的用煤 量Q(千克)的函数关系. (3).某厂现在年产值是150万元,计划今后每年增加10万元,请写出年产值y(万元)与年数x之间的关系. 五、交流反思 1.本堂课,我们讨论了具有什么样的函数是反比例函数,一般地,形如(k是常数,k0)的函数叫做反比例函数 2.反比例函数的几种常见形式 形式1:(k为常数,k0) 形式2:(k为常数,k0) 形式3:(k为常数,k0) 一、教材依据 人教版八年级第十七章反比例函数第二节第二课时 二、设计思路 (一)教材分析 本节课讲述内容是在理解反比例

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论