免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
范文范例 学习指导空间向量练习题1. 如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD60,E是CD的中点,PA底面ABCD,PA2. ()证明:平面PBE平面PAB;()求平面PAD和平面PBE所成二面角(锐角)的大小.如图所示,以A为原点,建立空间直角坐标系.则相关各点的坐标分别是A(0,0,0),B(1,0,0),P(0,0,2),()证明 因为,平面PAB的一个法向量是,所以共线.从而BE平面PAB.又因为平面PBE,故平面PBE平面PAB.()解 易知 设是平面PBE的一个法向量,则由得所以 设是平面PAD的一个法向量,则由得所以故可取 于是, 故平面PAD和平面PBE所成二面角(锐角)的大小是2. 如图,正三棱柱ABCA1B1C1的所有棱长都为2,D为CC1中点。()求证:AB1面A1BD;()求二面角AA1DB的大小;()求点C到平面A1BD的距离;()证明 取中点,连结为正三角形,在正三棱柱中,平面平面,平面取中点,以为原点,的方向为轴的正方向建立空间直角坐标系,则,xzABCDOFy,平面()解 设平面的法向量为,令得为平面的一个法向量由()知平面,为平面的法向量,二面角的大小为()解 由(),为平面法向量,点到平面的距离ACDOBEyzx3.如图,在四面体ABCD中,O、E分别是BD、BC的中点,(1)求证:平面BCD;(2)求异面直线AB与CD所成角的余弦值;(3)求点E到平面ACD的距离 证明 连结OC, 在中,由已知可得 而, ACDOBEyzx即 平面 (2)解 以O为原点,如图建立空间直角坐标系,则, 异面直线AB与CD所成角的余弦值为解 设平面ACD的法向量为则,令得是平面ACD的一个法向量又点E到平面ACD的距离4.已知三棱锥PABC中,PAABC,ABAC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.()证明:CMSN;()求SN与平面CMN所成角的大小.证明:设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系如图。则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,0).4分(),因为,所以CMSN 6分(),设a=(x,y,z)为平面CMN的一个法向量,则 9分因为所以SN与片面CMN所成角为45。 12分5. 如图,在三棱柱中,已知学,网,侧面,(1)求直线C1B与底面ABC所成角正切值;(2)在棱(不包含端点上确定一点的位置,使得(要求说明理由).(3)在(2)的条件下,若,求二面角的大小.解:(1)在直三棱柱中, 在平面上的射影为. 为直线与底面所成角. , 即直线与底面所成角正切值为2. (2)当E为中点时,. ,即 又, , (3)取的中点,的中点,则,且,连结,设,连结,则,且为二面角的平面角. , 二面角的大小为45 欢迎您的光临,Word文档下载后可修改编辑.双击可删除
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025炊事员试题及答案
- 2025年现代金融服务模式创新可行性研究报告及总结分析
- 2025年体育产业数字化升级项目可行性研究报告及总结分析
- 法律法规与综合能力考试题库附参考答案(研优卷)
- 2025年生鲜食品电商平台可行性研究报告及总结分析
- 2025年绿色建筑园区维护协议
- 2025年海洋资源综合开发项目可行性研究报告及总结分析
- 2025年无人船舶技术应用可行性研究报告及总结分析
- 2025年建筑电工(建筑特殊工种)证考试题库 含答案
- 2025年高级无人机驾驶员(物流)职业技能鉴定高分必过试题 含答案
- 房屋市政工程重大事故隐患2025版
- 2026年lng加气站建设项目可行性研究报告
- 餐梯电梯维保合同范本
- 2025年10月北京门头沟区龙泉镇流动人口协管员招聘2人笔试考试参考试题及答案解析
- 2025年党的二十届四中全会精神宣讲稿及公报解读辅导报告
- 施工安全保证体系和措施
- DB32-T 4353-2022 房屋建筑和市政基础设施工程档案资料管理规程
- 制造企业能源管理系统建设方案
- (正式版)DB63∕T 2437-2025 《大型并网光伏电站退役太阳电池组件延期使用或降级再利用的判定与要求》
- 2025年消费者购买力对新能源汽车市场发展影响可行性研究报告
- 领导干部任前法律法规知识考试题库及答案(2025年)
评论
0/150
提交评论