




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
鸽巢问题教学设计上饶市第三小学小学 刘艳彬【教学内容】人教版六年级下册【教学目标】1经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。2通过操作发展学生的类推能力,形成比较抽象的数学思维。3会用“鸽巢问题”解决简单的实际问题。【教学重点】 经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。【教学难点】 理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。【教具、学具准备】 每组都有相应数量的盒子、铅笔、书,扑克牌。教学过程:一、创设情景,导入新课(课前游戏引入。)师:同学们,在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?生:对!师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。下面我们开始上课,可以吗?【设计意图】教师从学生熟悉的“抢椅子”游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。二、探究新知(一)教学例1(1)初步感知 把3枝铅笔放进2个文具盒中,会出现哪些情况。同学们摆一摆、说一说,老师根据学生的汇报板书。2、出示题目:把4枝铅笔放进3个文具盒里。师:刚才我们做游戏,不管怎么坐,总有一把椅子上至少坐了2位同学。那么,把4枝铅笔放进3个文具盒里,有多少种放法呢?会出现什么情况呢?大家可不可以大胆的猜测一下?(学情预设:不管怎么放,总有一个文具盒里至少放进了2枝铅笔。)3、理解“至少”师:“至少”是什么意思?如何理解呢?(最少2枝,也可能比2枝多)师:到底我们猜测的对不对呢?怎么样证明这种现象呢?下面,就需要自己动手利用学具去摆一摆,动脑去想一想,看看能不能证明我们这个猜想。4、自主探究(1)两人一组利用手中的学具1摆一摆,想一想,可以怎么样去摆放?老师帮大家准备了一个记录单,你们可以把摆放的不同方法记录下来,以便你们分析结果是不是符合我们之前的猜测。(2)全班交流,学生汇报。第一种方法:(4,0,0)(3,1,0)(2,2,0)(2,1,1)学生解释自己的想法,验证猜测。教师课件演示,验证结论。(像大家刚才这样把每一种放法都列举出来,然后去一一验证,这种方法叫列举法)【设计意图】此处设计注意从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。抽屉原理对于学生来说,比较抽象,特别是“总有一个杯子中至少放进2根小棒”这句话的理解。所以通过具体的操作,列举所有的情况后,引导学生直接关注到每种分法中数量最多的杯子,理解“总有一个杯子”以及“至少2根”。让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。第二种方法:师:还有别的思考方法,来验证我们之前的猜测吗?假设法:(学生汇报)师课件演示,说明:先假设每个文具盒里各放入1枝铅笔,余下1枝铅笔不管放进哪个文具盒里,一定会出现“总有一个文具盒里至少有2枝铅笔”的现象。5、优化方法那么把5枝铅笔放进4个文具盒里,会怎样呢?那么把6枝铅笔放进5个文具盒里,会怎样呢?那么把7枝铅笔放进6个文具盒里,会怎样呢?那么把100枝铅笔放进99个文具盒里,会怎样呢?(学生解释说明,师课件演示)师:你们为什么都用第二种方法,而不用列举法呢?5、发现规律师:通过刚才我们分析的这些现象,你发现了什么?(当笔的枝数比铅笔盒数多1时,不管怎么放,总有一个文具盒里至少放2枝铅笔。)师:同学们能有这么了不起的发现,真不错!说明大家认真动脑思考了。那么老师这有一道和我们刚才这些题稍稍不同的题,看看你们能不能用这种思维来解决一下?【设计意图】关注“鸽巢问题”的最基本原理,物体个数必须要多于抽屉个数,化繁为简,此处确实有必要提领出来进行教学。在学生自主探索的基础上,教师注意引导学生得出一般性的结论:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。通过教师组织开展的扎实有效的教学活动,学生学的有兴趣,发展了学生的类推能力,形成比较抽象的数学思维。6、出示做一做:7只鸽子飞回5个鸽舍,至少有( )只鸽子要飞进同一个鸽舍里?(1)学生独立思考,可以自己想办法解决。(2)全班汇报,解释说明。(3)教师用课件演示(虽然鸽子的只数比鸽舍的数量多2,但是也是至少有2只鸽子要飞进同一个鸽舍里。)让学生运用简单的抽屉原理解决问题。在说理的过程中重点关注“余下的2只鸽子”如何分配?设计意图:从余数1到余数2、3、4,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。师:同学们真是太了不起了,善于运用分析、推理的方法来证明问题,得出结论。同学们的思维在不知不觉中也提升了许多。大家敢不敢再来挑战一道更难的题目?(二)教学例21、出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?2、学生利用学具探究3、学生汇报,教师课件演示如果把我们的这种思维方法用式子表示出来,该怎样列式?52=2.1(3)4、拓展:把7本书放进2个抽屉里呢?把9本书放进2个抽屉里呢?用式子怎么表示?72=3.1(4)92=41(5)师:同学们观察这些板书,你发现了什么规律吗?预设学生回答(商+余数)(商+1)5、做一做:8只鸽子飞回3个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。为什么?(1)学生独立思考,汇报交流。板书式子:83=22(2+1=3)(2)教师课件演示:至少有3只鸽子要飞进同一个鸽舍里,所以应该是商加1.【设计意图】在这一环节的教学中教师抓住假设法最核心的思路就是用“有余数除法”形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对“某个抽屉至少有书的本数”是除法算式中的商加“1”,而不是商加“余数”,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”。6、总结,揭示抽屉原理(1)师:刚才我们研究的这些现象就是著名的“抽屉原理”,(教师板书课题:抽屉原理)我们将小棒、鸽子看做物体,杯子、鸽舍看做抽屉)(2)看有关抽屉原理资料,让学生感受古代数学文化。“鸽巢问题”又称“鸽巢原理”,最先是由19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“鸽巢问题”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。【设计意图】当学生利用有余数除法解决了具体问题后,教师引导学生总结归纳这一类“鸽巢问题”的一般规律,使学生进一步理解掌握了“鸽巢问题”。三、拓展应用“抽屉原理”在现实生活中应用也是非常广泛的。下面,老师再带大家做一个小游戏。(扑克牌游戏)师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?生:2张/因为54=11师:先验证一下你们的猜测:举牌验证。师:如有3张同花色的,符合你们的猜测吗?师:如果9个人每一个人抽一张呢?生:至少有3张牌是同一花色,因为94=212、一年有53个星期,全班有54个同学,那么其中必有两个同学的生日在同一个星期。为什么?3、四(3)班有43名同学,至少有多少人在同一个月出生?4、全校有1603名学生,至少有多少人在同一天出生?四、全课小结通过今天的学习,你知道了什么?五、板书设计。 鸽巢问题物
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智慧城市建设中环保板车租赁及智能化管理协议
- 2025年分公司设备升级改造项目融资合同范本解析
- 2025年度高性能化工原料代理采购合作协议
- 2025年度智能矿山设备远程监控与保养服务合同
- 2025生态宜居社区家庭医生签约服务保障合同
- 山西省临汾市临汾一中2026届高三化学第一学期期末联考试题含解析
- 2025年度新能源汽车车身广告合作推广合同
- 2025年度节能减排技术改造项目融资合同
- 2025年互联网金融平台债权转让合作协议
- 2025年跨境货运合同环保责任实施细则范本
- YC/T 210.2-2006烟叶代码第2部分:烟叶形态代码
- GB/T 22000-2006食品安全管理体系食品链中各类组织的要求
- GB/T 20671.1-2006非金属垫片材料分类体系及试验方法第1部分:非金属垫片材料分类体系
- 熵权法教学讲解课件
- 医师病理知识定期考核试题与答案
- 课堂因“融错·容错·溶措”而精彩
- 阳光晾衣房钢结构专项施工方案
- 安宁疗护服务流程
- 热分析DSC培训new
- 注塑机安全操作规程
- 运动处方(课堂PPT)
评论
0/150
提交评论