论文:临界常见保费效用函数.doc_第1页
论文:临界常见保费效用函数.doc_第2页
论文:临界常见保费效用函数.doc_第3页
论文:临界常见保费效用函数.doc_第4页
论文:临界常见保费效用函数.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

论文:临界常见保费效用函数 论文关键词:效用函数临界保费理赔 论文摘要:根据保险人保险定价的效用方程,分别讨论了在3种不同效用函数下的临界保费. 从管理决策的角度看,保险产品的定价问题、准备金提留问题、再保险自留额问题以及资产负债配比问题都是风险和不确定条件下的决策.从风险决策的理论和实践知道,合理的决策不仅取决于对外在环境的不确定的把握,而且取决于决策者对自身的价值结构判断.在保险学中,通过引入效用函数来描述决策者的风险态度、偏好和价值结构,并将它与潜在损失或理赔的概率评估有机结合起来,从更加综合的角度寻求诸多保险决策问题的解. 一般地,决策者的风险态度被分为三种类型:风险偏好、风险厌恶和风险中立,分别对应着他们的效用函数u(x)的曲线为上凸、下凸和直线三种情况.最普遍的情况是厌恶风险,本文重点讨论此种情况. 1保险定价问题 引理1(Jensen不等式)设决策者的风险是厌恶风险,即它的效用函数u(x)满足u(x)0,u(x)0,0x0,假设理赔X的概率分布为F(x),则此时临界保费为G*=1lnMX(),其中MX()为理赔随机变量X的矩母函数.证明考虑保险人定价的效用方程为 U(W+G*-X)=u(W). U(W+G*-X)=E(uW+G*-X) =+0-e-(W+G-X*)dF(x) =-e-(W+G*)+0exdF(x) =-e-(W+G)*MX(), u(W)=-eW, 联立两式得G*=1MX(). 可以看出对于这类特殊的效用函数,临界保费与保险人所拥有的财富大小无关. 3总结 效用理论一直是研究在风险和不确定条件下进行合理决策的理论基础,保险研究之中除保险定价以外,决定合理的准备金、自留额以及选择合理的财务方案都可以以此作为决策的原理.因此,它具有很强的理论指导作用. 从以上几个例子可以看出,实际保险定价中常用的“均值原理”和“方差原理”等只不过是期望效用的特殊形式,它们对应着一次、二次多项式等简单的效用函数.类似地,还可以讨论对数效用函数u(x)=lnx、分数幂效用函数u(x)=xr(0r1)等其他常见效用函数所对应的情况. 参考文献 1谢志刚,韩天雄.风险理论与非寿险精算M.天津:南开大学出版社,2000. 2茆诗松,王静龙,濮晓龙.高等数理统计M.北京:高等教育出版社,2000. 3卢仿先,曾庆五

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论