考研数学二13年真题.doc_第1页
考研数学二13年真题.doc_第2页
考研数学二13年真题.doc_第3页
考研数学二13年真题.doc_第4页
考研数学二13年真题.doc_第5页
免费预览已结束,剩余17页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2013年考研数学二真题及答案一、选择题 18小题每小题4分,共32分设,当时, ( )(A)比高阶的无穷小 (B)比低阶的无穷小(C)与同阶但不等价无穷小 (D)与等价无穷小2已知是由方程确定,则( )(A)2 (B)1 (C)-1 (D)-2设,则( )()为的跳跃间断点 ()为的可去间断点()在连续但不可导 ()在可导设函数,且反常积分收敛,则( )(A) (B) (C) (D)设函数,其中可微,则( )(A) (B)(C) (D)6设是圆域的第象限的部分,记,则( )(A) (B) (C) (D)7设,均为阶矩阵,若,且可逆,则(A)矩阵C的行向量组与矩阵A的行向量组等价(B)矩阵C的列向量组与矩阵A的列向量组等价(C)矩阵C的行向量组与矩阵B的行向量组等价(D)矩阵C的列向量组与矩阵B的列向量组等价8矩阵与矩阵相似的充分必要条件是(A) (B),为任意常数(C) (D),为任意常数二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9 10设函数,则的反函数在处的导数 11设封闭曲线L的极坐标方程为为参数,则L所围成的平面图形的面积为 12曲线上对应于处的法线方程为 13已知是某个二阶常系数线性微分方程三个解,则满足方程的解为 14设是三阶非零矩阵,为其行列式,为元素的代数余子式,且满足,则= 三、解答题15(本题满分10分)当时,与是等价无穷小,求常数16(本题满分10分)设D是由曲线,直线及轴所转成的平面图形,分别是D绕轴和轴旋转一周所形成的立体的体积,若,求的值17(本题满分10分)设平面区域D是由曲线所围成,求18(本题满分10分)设奇函数在上具有二阶导数,且,证明:(1)存在,使得;(2)存在,使得19(本题满分10分)求曲线上的点到坐标原点的最长距离和最短距离20(本题满分11)设函数求的最小值;设数列满足,证明极限存在,并求此极限21(本题满分11)设曲线L的方程为(1)求L的弧长(2)设D是由曲线L,直线及轴所围成的平面图形,求D的形心的横坐标22本题满分11分)设,问当为何值时,存在矩阵C,使得,并求出所有矩阵C23(本题满分11分)设二次型记(1)证明二次型对应的矩阵为 ;(2)若正交且为单位向量,证明在正交变换下的标准形为 一.选择1.【详解】显然当时,故应该选(C)2. 【分析】本题考查的隐函数的求导法则信函数在一点导数的定义【详解】将代入方程得,在方程两边求导,得,代入,知,故应该选(A)3. 【详解】只要注意是函数的跳跃间断点,则应该是连续点,但不可导应选()4.【详解】,其中当且仅当时才收敛;而第二个反常积分,当且仅当才收敛从而仅当时,反常积分才收敛,故应选()5. 【详解】应该选(A)6. 【详解】由极坐标系下二重积分的计算可知所以,应该选(B)7. 【详解】把矩阵A,C列分块如下:,由于,则可知,得到矩阵C的列向量组可用矩阵A的列向量组线性表示同时由于B可逆,即,同理可知矩阵A的列向量组可用矩阵C的列向量组线性表示,所以矩阵C的列向量组与矩阵A的列向量组等价应该选(B)8. 【详解】注意矩阵是对角矩阵,所以矩阵A=与矩阵相似的充分必要条件是两个矩阵的特征值对应相等从而可知,即,为任意常数,故选择(B)二.填空9.【详解】10. 【详解】由反函数的求导法则可知11. 【详解】所以答案为12. 【详解】当时,所以法线方程为,也就是13. 【详解】显然和是对应的二阶常系数线性齐次微分方程两个线性无关的解,由解的结构定理,该方程的通解为,其中为任意常数把初始条件代入可得,所以答案为14. 【详解】由条件可知,其中为A的伴随矩阵,从而可知,所以可能为或0但由结论可知,可知,伴随矩阵的秩只能为3,所以三.解答题15. 【分析】主要是考查时常见函数的马克劳林展开式【详解】当时,所以,由于与是等价无穷小,所以16. 【详解】由微元法可知;由条件,知17. 【详解】18. 【详解】证明:(1)由于为奇函数,则,由于在上具有二阶导数,由拉格朗日定理,存在,使得(2)由于为奇函数,则为偶函数,由(1)可知存在,使得,且,令,由条件显然可知在上可导,且,由罗尔定理可知,存在,使得即19. 【分析】考查的二元函数的条件极值的拉格朗日乘子法【详解】构造函数令,得唯一驻点,即考虑边界上的点,;距离函数在三点的取值分别为,所以最长距离为,最短距离为120. 【详解】(1),令,得唯驻点,当时,函数单调递减;当时,函数单调递增所以函数在处取得最小值(2)证明:由于,但,所以,故数列单调递增又由于,得到,数列有界由单调有界收敛定理可知极限存在令,则,由(1)的结论可知21. 【详解】(1)曲线的弧微分为,所以弧长为(2)设形心坐标为,则22. 【详解】显然由可知,如果C存在,则必须是2阶的方阵设,则变形为,即得到线性方程组,要使C存在,此线性方程组必须有解,于是对方程组的增广矩阵进行初等行变换如下,所以,当时,线性方程组有解,即存在矩阵C,使得此时,所以方程组的通解为,也就是满足的矩阵C为,其中为任意常数23. 【详解】证明:(1)所以二次型对应的矩阵为 证明(2)设,由于则,所以为矩阵对应特征值的特征向量;,所以为矩阵对应特征值的特征向量;而矩阵A的秩,所以也是矩阵的一个特征值故在正交变换下的标准形为 严歌苓说,人之间的关系不一定从陌生进展为熟识,从熟识走向陌生,同样是正常进展。人与人之间的缘分,远没有想像中的那么牢固,也许前一秒钟还牵手一起经历风雨,后一秒就说散就散,所以,你要懂得善待和珍惜。人与人相处,讲究个真心,你对我好,我就对你好,你给予真情,我还你真意,人心是相互的。两个人在一起,总会有人主动,但主动久了,就会累,会伤心,心伤了就暖不回来了,凡事多站在对方的角度想一想,多一份忍耐和谦就,就不会有那么多的怨气和误解,也少了一些擦肩而过。做人不要太苛刻,太苛无友,人无完人,每个人都有这样或那样的缺点,重在包容。 包容是一种大度,整天笑呵呵的人并不是他没有脾气和烦恼,而是心胸开阔,两个懂得相互包容的人,才能走得越久。人与人相处,要多一份真诚,俗语说,你真我便真。常算计别人的人,总以为自己有多聪明,孰不知被欺骗过的人,就会选择不再相信,千万别拿人性来试人心,否则你会输得体无完肤。人与人相处不要太较真,生活中我们常常因为一句话而争辩的面红耳赤,你声音大,我比你嗓门还大,古人说,有理不在声高,很多时候,让人臣服的不是靠嘴,而是靠真诚,无论是朋友亲人爱人都不要太较真了,好好说话,也是一种修养。俗语说,良言一句三冬暖, 你对我好,我又岂能不知,你谦让与我,我又怎能再得寸进尺,你欣赏我,我就有可能越变越好,你尊重我,我也会用尊重来回报你,你付出爱,必会得到更多的爱。与人相处,要多一份和善,切忌恶语相向,互相伤害就有可能永远失去彼此,每个人心中都有一座天平,每个人心中都藏一份柔软,表面再强势的人,内心也是渴求温暖的。做人要学会谦虚,虚怀若谷。人人都喜欢和谦虚的人交往,司马懿说:“臣一路走来,没有敌人,看见的都是朋友和师长”.这就是胸怀。有格局的人,心中藏有一片海,必能前路开阔,又何愁无友。人与人相处,开始让人舒服的也许是你的言语和外表,但后来让人信服的一定是你的内在。就如那句,欣赏一个人,始于颜值,敬于才华,合于性格,久于善良,终于人品。人这一生,遇见相同的人不容易,遇见正确的人更不容易,只有选择了合适的相处方式,带上真诚与人相处,才会走得更长,更远更久。人与人相处,要多一份真诚,俗语说,你真我便真。常算计别人的人,总以为自己有多聪明,孰不知被欺骗过的人,就会选择不再相信,千万别拿人性来试人心,否则你会输得体无完肤。人与人相处不要太较真,生活中我们常常因为一句话而争辩的面红耳赤,你声音大,我比你嗓门还大,古人说,有理不在声高,很多时候,让人臣服的不是靠嘴,而是靠真诚,无论是朋友亲人爱人都不要太较真了,好好说话,也是一种修养。俗语说,良言一句三冬暖, 你对我好,我又岂能不知,你谦让与我,我又怎能再得寸进尺,你欣赏我,我就有可能越变越好,你尊重我,我也会用尊重来回报你,你付出爱,必会得到更多的爱。与人相处,要多一份和善,切忌恶语相向,互相伤害就有可能永远失去彼此,每个人心中都有一座天平,每个人心中都藏一份柔软,表面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论