


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
21.2.1配方法一、教学目标1、掌握配方法的推导过程,并能够熟练地进行配方.2、用配方法解数字系数的一元二次方程.3、在配方法的应用过程中体会 “转化”的思想,掌握一些转化的技能.二、教学设想 结合旧的知识展开,重点讨论配方法解一元二次方程。教学中,应注意循序渐进地让学生掌握用配方法解数字系数的一元二次方程的做法,并且理解配方是为了配成完全平方的形式,再利用直接开平方的方法将一个一元二次方程转化为两个一元一次方程.三、教材分析本课时的教材在第一课时的基础上,通过对直接开平方的方法的理解,进一步引出用配方法解一元二次方程,然后再引导学生得出的这个方程的具体的解。以直接开平方法为铺垫,把解一元二次方程转化为用配方法,也是为后面学习其它一元二次方程的解法作好准备。四、重点难点重难点:使学生掌握配方法,解一元二次方程.把一元二次方程转化为.(q0)五、教学方法引导学习法六、教具准备多媒体课件七、教学过程1复习引入1、请说出完全平方公式 , 2、解下列方程,并说明解法的依据: (1) (2) (3) 方程都可以转化为以下两个类型:根据平方根的意义,均可用“直接开平方法”来解,如果b 0,方程就没有实数解。3、思考下列方程(1) (2)思考:还能利用直接开平方法解一元二次方程吗?4、新课 1、根据完全平方公式填空(1)(2)【互动】怎样解方程x2+2x-5=0?引导考虑用直接开方法解一元二次方程. (小组探索) x2+2x+1-1-5=0x2+2x+1=6 写成完全平方式: 采用直开法降次解题: x+1= 解一元一次方程: x=-1, x=-1,像上边那样,我们把方程 通过配成完全平方的形式 来解一元二次方程的方法,叫做配方法.它的左边是一个含有未知数的完全平方式,右边是一个非负常数.强调:无论是直接开平方法还是配方法,其本质都是先降次,化成一元一次方程解决问题.例题1:解下列方程:(1) ; (2) ; (3). 分 析:能否经过适当变形,将它们转化为(x+a)2=b (b)的形式,应用直接开方法求解?例题2,解方程方程二次项的系数不为1的时候,现将系数化为1,即每一项都除以二次项的的系数。5、小结:让学生反思本节课的解题过程,归纳小结出配方法解一元二次方程的步骤:1、若二次项系数不是1,把二次项系数化为1(方程两边都除以二次项系数);2、在方程的两边各加上一次项系数的一半的平方, 使左边成为完全平方;3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度大型活动策划设计聘请专项合同
- 诸暨珍珠知识培训课件
- 2025装载机的买卖合同范本
- 2025年双边房屋租赁转让合同范本
- 红色景点培训课件教学
- 红细胞增多性疾病
- 诗经采薇节课件
- 红楼梦课件教学课件
- 商品车运输协议
- 诗经故国之思课件
- 中国算力发展指数白皮书
- 工程项目决算书
- 北师大版六年级数学上册《全册》课件(完整版)
- 娱乐场所禁毒培训内容
- 智能材料与结构系统教学课件
- “新高考、新课标、新教材”背景下2025届高考地理二轮三轮复习备考策略
- 供应链融资担保项目投资计划书
- ERAS理念下疼痛管理专家共识(2021版)
- 部编版四年级道德与法治上册知识点汇总
- 肺切除术后支气管胸膜瘘处理策略
- 钢构雨棚施工方案
评论
0/150
提交评论