



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程的解法的灵活运用(教学设计)广州市陈嘉庚纪念中学 数学科 关文勇 201706【要点综述】:一、定义:如能整理为的形式,那么这个方程就是一元二次方程。 二、一元二次方程的解法原则:解一元二次方程的基本思想方法是通过“降次”,将它化为两个一元一次方程。三、一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。如下表:方法适合方程类型注意事项直接开平方法0时有解,0时无解。配方法二次项系数若不为1,必须先把系数化为1,再进行配方。公式法0时,方程有解;0时,方程无解。先化为一般形式再用公式。因式分解法方程的一边为0,另一边分解成两个一次因式的积。方程的一边必须是0,另一边可用任何方法分解因式。 【分组准备】1、 第一组负责:公式法;第二组负责:配方法;第三组负责:因式分解法;第四组负责:直接开平方法;第五组负责:韦达定理;2、 每组选派一名代表准备发言。【教学目的】 1、小结解法;2、灵活运用;【教学过程】1、课堂引入(老师)2、分组解说(老师引导和提示)3、其他同学发表意见。【课堂实录】例1 :用开平方法解下面的一元二次方程。(1); (2)(3); 分析:直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如的方程,解:(1) (注意不要丢解) (2) (3) ,只需在一边取正负号,还应注意不要丢解。例2 :用配方法解下列一元二次方程。(1);(2)分析:用配方法解方程,应先将常数移到方程右边,再将二次项系数化为1,变为的形式。第(1)题可变为,然后在方程两边同时加上一次项系数的一半的平方,即:,方程左边构成一个完全平方式,右边是一个不小于0的常数,即:,接下去即可利用直接开平方法解答了。第(2)题在配方时应特别注意在方程两边同时加上一次项系数的一半的平方。(2) 二次项系数化为1,移常数项得: 说明: 一次项系数是分数时,不主张用配方法。 例3:用公式法解下列方程。 (1);(2)分析:用公式法就是指利用求根公式,使用时应先把一元二次方程化成一般形式,然后计算判别式的值,当0时,把各项系数的值代入求根公式即可得到方程的根。但要注意当0时,方程无解。第(1)小题应先移项化为一般式,再计算出判别式的值,判断解的情况之后,方可确定是否可直接代入求根公式;第(2)小题为了避免分数运算的繁琐,可变形为,求出判别式的值后,再确定是否可代入求根公式求解。 解:(1), 化为一般式: 求出判别式的值:0 代入求根公式:, , (2) 化为一般式:说明:公式法可以用于解任何一元二次方程,在找不到简单方法时,即考虑化为一般形式后使用公式法。但在应用时要先明确公式中字母在题中所表示的量,再求出判别式的值,解得的根要进行化简。 例4:用分解因式法解下列方程。(1) 于是可得:, , 说明:使用分解因式法时,方程的一边一定要化为0,这样才能达到降次的目的。把方程一边化为0,把另一边分解因式的方法可以用于解今后遇到的各类方程。因为这是把方程降次的重要手段之一。 从上述例题来看,解一元二次方程的基本思路是向一元一次方程转化,例5:选用恰当的方法解下列方程。 (1); (2)(3); (4)例6:韦达定理及应用总结:直接开平方法是最基本的方法。公式法和配方法是最重要的方法。公式法适用于任何一元二次方程,在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在使用公式前应先计算出判别式的值,以便判断方程是否有解。配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的重要的数学方法之一。最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般式,同时应使二次项系数化为正数。因此在解一元二次方程时,首先观
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江西吉安吉水县城控人力资源服务有限公司招聘外勤服务岗1人备考考试题库附答案解析
- 2025浙江宁波农商发展集团有限公司招聘7人备考考试题库附答案解析
- 2025广东广州中医药大学招聘医疗卫生人员15人(第二批编制)备考考试题库附答案解析
- 2025年浦江县国有企业劳务派遣员工公开招聘15人考试参考试题及答案解析
- 2025重庆万盛经开区事业单位面向“三支一扶”期满合格人员考核招聘3人考试备考题库及答案解析
- 2026中国工商银行秋季校园招聘备考考试题库附答案解析
- 运动驱动学习力
- 月饼的故事与制作
- 工厂安全培训改善事项课件
- 工厂安全培训成果课件
- 美术微课课题立项申报书
- GB/T 46084-2025燃煤锅炉火焰温度图像检测技术规范
- 2025年贵州省毕节市辅警招聘考试题题库(含参考答案)
- 女职工法律培训
- 2025口腔执业医师考试仿真模拟试题及答案
- 2025年辅警考试公共基础知识真题库(含答案)
- 兵团面试题目及答案
- 2025劳动合同范本下载
- 2025-2026学年高二上学期数学第一次月考立体几何卷全解析【测试范围:沪教版2020必修第三册第十章】(上海专用)
- 小学法律知识竞赛试题(附答案)
- 浙教版(2023)五年级上册信息科技 第1课 身边的算法 课件
评论
0/150
提交评论