数学人教版六年级下册课时作业_第1页
数学人教版六年级下册课时作业_第2页
数学人教版六年级下册课时作业_第3页
数学人教版六年级下册课时作业_第4页
数学人教版六年级下册课时作业_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆锥的体积教学设计广州市花都区新华街第一小学 毕敏枝教学内容:第33页的例2。教学目标:1、通过分组实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。2、在小组活动过程中,培养学生的观察、动手操作能力,培养学生良好的合作探究意识,引导学生掌握正确的学习方法。学情分析:学生在这一课之前已经认识了圆锥,知道圆锥与圆柱的相同之处,本课正是以此为生发点引出新课的学习。本班学生中,一部分学生学习比较积极,可惜为数不多。所以,正好借助小组合作的方式,希望这些孩子的正能量能够影响其他学习比较被动的孩子。同时,公式的记忆以及计算的准确度对本单元的学习至关重要,所以在课堂上力图让孩子们亲自探索新知以加深记忆,并且在练习中着力引导学生掌握灵活、简便的计算方法。教学重点:掌握圆锥体积的计算公式。教学难点:正确探索出圆锥体积和圆柱体积之间的关系,理解圆锥体积公式的推导过程。学具准备:每四个学生分为一个小组,每个小组配备一套圆柱和圆锥容器,其中含有等底等高的若干套等底不等高、等高不等底、不等底也不等高的各一套。教具准备:课件、演示用的等底等高的圆柱、圆锥容器各一个,装满红色水的容器一个,圆锥模型一个。教学过程:一、复习旧知:口答:求下面圆柱的体积。(1)r=1cm,h=2cm。 (2) s=6平方厘米,h=5厘米。二、情境引入:(1)(老师出示圆锥模型):你认识它吗?(2)学生发言:(认识,这是一个圆锥。)(3)教师:我们认识这个新朋友,今天我们这节课继续来研究它。(出示课题:圆锥的体积)(4)提出疑问:我们已经学习过计算哪些立体图形的体积?你觉得这几种立体图形之中,圆锥跟谁的关系更密切一些?(5)学生:圆锥跟圆柱的关系更密切一些,因为它们都有一个面是圆形,而且它们的侧面都是曲面。(6)教师:你说得对!所以这节课我们首先来探究一下,圆锥和圆柱的体积之间,究竟有些什么关系?三、新课探究(一)、探究圆锥体积的计算公式。 1、大胆猜测:(1)圆锥的体积该怎样求呢?能不能通过我们已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)(2)圆锥和我们认识的哪种立体图形有共同点?(学生答:圆柱)为什么?(圆柱的底面是圆,圆锥的底面也是圆)2、试验探究圆锥和圆柱体积之间的关系 我们通过试验来研究圆锥体积和圆柱体积的关系。(1)小黑板出示试验要求:每个学习小组有四名同学,分工如下 a:用圆锥装满米(要装满但不能凸出来)往圆柱倒,直至倒满. b:帮助a同学把米倒进圆柱里,尽量不要洒到外面。c:记住倒米的次数。d: 试验结束后把不小心撒出的大米收回到容器中,不能浪费。 (2)学生分组用圆柱圆锥试验,做好记录。教师在组间巡回指导。(3)汇报交流:老师根据学生的汇报填表。(根据学生的回答先填好第三行。组别圆柱与圆锥的关系( ) 底( )高( ) 底( )高( ) 底( )高( ) 底( )高几次倒满 汇报结果显示,大部分小组得出的结果都是3次刚好倒满,而另外三个小组却分别得到不同的结果。教师质疑:为什么大部分的小组的结果都相同?这些小组所使用的圆柱和圆锥有什么相同的特点?而那几个小组得出各不相同的结果,他们所使用的圆柱和圆锥与有何不同之处呢?(4)教师引导学生比较所用的圆柱和圆锥的底和高,让各个小组汇报,根据学生的汇报完成表格的第一、第二行。(5)教师:请小朋友们观察表格里的信息,你有什么发现? 学生:我发现,在等底等高的条件下,圆锥的体积正好是圆柱体积的1/3。教师大加赞赏,并追问:如果底和高这两个因素其中有一个不相等,还能得出这样的结论吗?学生:不能。教师:我没有亲自做这个实验,有点怀疑,我要亲自验证一下。老师用等底等高的圆柱圆锥装红色水演示。 先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?把圆柱装满水往圆锥里倒,几次才能倒完? (教师让学生注意记录几次,使学生清楚地看到倒3次正好把圆柱装满。)教师:哦,我看清楚了,如果一个圆柱和一个圆锥等底等高,那么圆锥的体积果然是圆柱体积的1/3。请同学们把你们刚刚这个了不起的发现复述一次好吗?学生们齐声复述,教师出示板书:在等底等高的条件下,圆锥的体积是圆柱体积的1/3。问:也能怎样理解?根据学生回答,接着板书:圆柱的体积是圆锥的3倍。3、公式推导(1) 你能把上面的试验结果用式子表示吗?(学生尝试)(2)老师结合学生的回答板书:圆锥的体积公式及字母公式:(3)在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)进一步强调等底等高的圆锥和圆柱才存在这种关系。(二)圆锥的体积计算公式的应用1、填空:(1)一个圆柱的体积是15 m,与它等底等高的圆锥的体积是( )m。(2)一个圆锥的体积是18m,与它等底等高的圆柱的体积是( )m。(三)、教学例题:工地上有一堆沙子近似于一个圆锥(如下图)。这堆沙子的体积大约有多少? 4m 1.5m (1)让学生自己审题,找出已知条件和所求问题。并自己选择适用的计算公式进行计算。 (3)指名板演,集体订正。讲解技巧:已知圆锥的底面直径和高,可以直接利用公式 v=1/3 兀(d2)2h来求圆锥的体积。在计算过程中,如果有因数可以与1/3约分,先约分再计算比较简便。四、知识应用(一)做一做1. 一个圆锥形的零件,底面积是19cm2,高是12cm, 这个零件的体积是多少?2、一个圆锥,底面半径3cm,高5cm,求它的体积。(二)、看图计算各图形的体积1(圆锥图,底面直径2厘米,高3厘米。)2、(圆柱图,底面直径2厘米,高3厘米。)学生自己计算,教师巡视,并随机抽取学生的练习本进行投影,进行评价,提醒学生,圆柱和圆锥的体积计算公式只是相差一个1/3,所以在解题过程中一定要先审形体,在选择相应的计算公式。引导学生观察,这两道题中的圆柱和圆锥是等底等高的,如果我们的计算正确的话,第一图的答案应该正好是第二图的答案的1/3。(三)提高训练一个圆锥,底面周长是31.4cm,高是cm。它的体积是多少?(四)下面各题的说法对吗,为什么1、圆锥的体积等于圆柱体积的三分之一。2、圆柱的体积一定大于圆锥的体积。3、一块圆柱形钢材,能熔铸成三个与它等底等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论