高考数学数列概念及等差数列复习资料.doc_第1页
高考数学数列概念及等差数列复习资料.doc_第2页
高考数学数列概念及等差数列复习资料.doc_第3页
高考数学数列概念及等差数列复习资料.doc_第4页
高考数学数列概念及等差数列复习资料.doc_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

普通高中课程标准实验教科书数学 人教版 高三新数学第一轮复习教案(讲座28)数列概念及等差数列一课标要求:1数列的概念和简单表示法;通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊函数;2通过实例,理解等差数列的概念,探索并掌握等差数列的通项公式与前n项和的公式;3能在具体的问题情境中,发现数列的等差关系,并能用有关知识解决相应的问题。体会等差数列与一次函数的关系。二命题走向数列在历年高考都占有很重要的地位,一般情况下都是一至二个客观性题目和一个解答题。对于本将来讲,客观性题目主要考察数列、等差数列的概念、性质、通项公式、前n项和公式等基本知识和基本性质的灵活应用,对基本的计算技能要求比较高。预测07年高考:1题型既有灵活考察基础知识的选择、填空,又有关于数列推导能力或解决生产、生活中的实际问题的解答题;2知识交汇的题目一般是数列与函数、不等式、解析几何、应用问题联系的综合题,还可能涉及部分考察证明的推理题。三要点精讲1数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。记作,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,序号为 的项叫第项(也叫通项)记作;数列的一般形式:,简记作 。(2)通项公式的定义:如果数列的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。例如,数列的通项公式是= (7,),数列的通项公式是= ()。说明:表示数列,表示数列中的第项,= 表示数列的通项公式; 同一个数列的通项公式的形式不一定唯一。例如,= =; 不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,(3)数列的函数特征与图象表示:序号:1 2 3 4 5 6项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从函数观点看,数列实质上是定义域为正整数集(或它的有限子集)的函数当自变量从1开始依次取值时对应的一系列函数值,通常用来代替,其图象是一群孤立点。(4)数列分类:按数列项数是有限还是无限分:有穷数列和无穷数列;按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。(5)递推公式定义:如果已知数列的第1项(或前几项),且任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个 数列的递推公式。2等差数列(1)等差数列定义:一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。用递推公式表示为或。(2)等差数列的通项公式:;说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列, 为递减数列。(3)等差中项的概念:定义:如果,成等差数列,那么叫做与的等差中项。其中 ,成等差数列。(4)等差数列的前和的求和公式:。四典例解析题型1:数列概念例1根据数列前4项,写出它的通项公式:(1)1,3,5,7;(2),;(3),。解析:(1)=2; (2)= ; (3)= 。点评:每一项序号与这一项的对应关系可看成是一个序号到另一个数集的对应关系,这对考生的归纳推理能力有较高的要求。例2数列中,已知,(1)写出,; (2)是否是数列中的项?若是,是第几项?解析:(1),; (2)令,解方程得, 即为该数列的第15项。点评:该题考察数列通项的定义,会判断数列项的归属。题型2:数列的递推公式例3如图,一粒子在区域上运动,在第一秒内它从原点运动到点,接着按图中箭头所示方向在x轴、y轴及其平行方向上运动,且每秒移动一个单位长度。(1)设粒子从原点到达点时,所经过的时间分别为,试写出的通相公式;(2)求粒子从原点运动到点时所需的时间;(3)粒子从原点开始运动,求经过2004秒后,它所处的坐标。解析:(1) 由图形可设,当粒子从原点到达时,明显有 , 。,。,即。 (2)有图形知,粒子从原点运动到点时所需的时间是到达点所经过得时间 再加(4416)28秒,所以秒。(3)由2004,解得,取最大得n=44,经计算,得19802004,从而粒子从原点开始运动,经过1980秒后到达点,再向左运行24秒所到达的点的坐标为(20,44)。点评:从起始项入手,逐步展开解题思维。由特殊到一般,探索出数列的递推关系式,这是解答数列问题一般方法,也是历年高考命题的热点所在。例4(1)已知数列适合:,写出前五项并写出其通项公式; (2)用上面的数列,通过等式构造新数列,写出,并写出的前5项。解:(1) ,; (2), ,点评:会根据数列的前几项写出数列的一个通项公式,了解递推公式是给出数列的又一种重要方法,能根据递推公式写出数列的前几项。题型3:数列的应用例5(05广东,14)设平面内有条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点若用表示这条直线交点的个数,则=_;当时, (用表示)。答案:5,图B解析:由图B可得,由,可推得n每增加1,则交点增加个,。点评:解决此类问题的思路是先将实际问题转化为数列模型来处理。例6(2003京春理14,文15)在某报自测健康状况的报道中,自测血压结果与相应年龄的统计数据如下表.观察表中数据的特点,用适当的数填入表中空白(_)内。答案:140 85解析:从题目所给数据规律可以看到:收缩压是等差数列.舒张压的数据变化也很有规律:随着年龄的变化,舒张压分别增加了3毫米、2毫米,照此规律,60岁时的收缩压和舒张压分别为140;85.点评:本题以实际问题为背景,考查了如何把实际生活中的问题转化为数学问题的能力.它不需要技能、技巧及繁杂的计算,需要有一定的数学意识,有效地把数学过程实施为数学思维活动。题型4:等差数列的概念例7(2001天津理,2)设Sn是数列an的前n项和,且Sn=n2,则an是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列答案:B;解法一:an=an=2n1(nN)又an+1an=2为常数,常数an是等差数列,但不是等比数列.解法二:如果一个数列的和是一个没有常数项的关于n的二次函数,则这个数列一定是等差数列。点评:本题主要考查等差数列、等比数列的概念和基本知识,以及灵活运用递推式an=SnSn1的推理能力.但不要忽略a1,解法一紧扣定义,解法二较为灵活。例8(2006年江苏卷)设数列、满足:,(n=1,2,3,),证明:为等差数列的充分必要条件是为等差数列且(n=1,2,3,)证明:必要性:设数列是公差为的等差数列,则:=-=0,(n=1,2,3,)成立;又=6(常数)(n=1,2,3,)数列为等差数列。充分性:设数列是公差为的等差数列,且(n=1,2,3,), 得:= 从而有得:,由得:(n=1,2,3,),由此,不妨设(n=1,2,3,),则(常数)故从而得:,故(常数)(n=1,2,3,),数列为等差数列。综上所述:为等差数列的充分必要条件是为等差数列且(n=1,2,3,)。证法二:令An = a n+1- a n,由b nb n+1知a n - a n+2a n+1- a n+3。从而a n+1- a na n+3 - a n+2,即AnAn+2(n=1,2,3,)由c n = a n + 2a n+1 + 3a n+2, c n+1 = 4a n+1 + 2a n+2 - 3 a n+3得c n+1-c n=( a n+1- a n+2(a n+2- a n+1)+3(a n+3 - a n+2),即An+2An+1+3An+2=d2. 由此得An+2+2An+3+3An+2=d2. -得(An-An+2)+2(An+1- An+3)+3(An+2- An+4)=0 因为An-An+20,An+1- An+30,An+2- An+40,所以由得An-An+2=0(n=1,2,3,)。于是由得4An+2An+1=An+1+2An+2+3An+2=d2, 从而2An+4An+1=4An+1+2An+2=d2 由和得4An+2An+1=2An+4An+1,故An+1= An ,即a n+2- a n+1= a n+1- a n(n=1,2,3,),所以数列a n是等差数列。点评:该题考察判断等差数列的方法,我们要讲平时积累的方法巧妙应用,有些结论可以起到事半功倍的效果。题型5:等差数列通项公式例9(2006年全国卷I)设是公差为正数的等差数列,若,则( )A B C D解析:,将代入,得,从而。选B。点评:应用等差数列的通项公式将因式转化为只含首项和公差的式子,变元减少,因式就容易处理了。例10(1)(2005湖南16)已知数列为等差数列,且 ()求数列的通项公式; ()证明解析:(1)(I)解:设等差数列的公差为d。由即d=1。所以即(II)证明因为,所以 点评:该题通过求通项公式,最终通过通项公式解释复杂的不等问题,属于综合性的题目,解题过程中注意观察规律。题型6:等差数列的前n项和公式例11(1)(2002京皖春,11)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A.13项B.12项C.11项D.10项(2)(2001全国理,3)设数列an是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A.1 B.2 C.4 D.6(3)(2006年全国卷II)设Sn是等差数列an的前n项和,若,则( )A B C D解析:(1)答案:A设这个数列有n项n13(2)答案:B前三项和为12,a1a2a312,a24a1a2a348,a24,a1a312,a1a38,把a1,a3作为方程的两根且a1a3,x28x120,x16,x22,a12,a36,选B.(3)答案为A;点评:本题考查了数列等差数列的前n项和公式的运用和考生分析问题、解决问题的能力。例12(1)(2000全国文,18)设an为等差数列,Sn为数列an的前n项和,已知S77,S1575,Tn为数列的前n项和,求Tn。(2)(1998全国文,25)已知数列bn是等差数列,b1=1,b1+b2+b10=100.()求数列bn的通项bn;()设数列an的通项an=lg(1+),记Sn是数列an的前n项和,试比较Sn与lgbn+1的大小,并证明你的结论。解析:(1)设等差数列an的公差为d,则Sn=na1n(n1)dS77,S1575,即解得a12,d1a1(n1)d2(n1)。,数列是等差数列,其首项为2,公差为,Tnn2n(2)()设数列bn的公差为d,由题意得解得 bn=2n1.()由bn=2n1,知Sn=lg(1+1)+lg(1+)+lg(1+)=lg(1+1)(1+)(1+),lgbn+1=lg.因此要比较Sn与lgbn+1的大小,可先比较(1+1)(1+)(1+)与的大小.取n=1,有(1+1),取n=2,有(1+1)(1+),由此推测(1+1)(1+)(1+).若式成立,则由对数函数性质可断定:Snlgbn+1。下面用数学归纳法证明式。(i)当n=1时已验证式成立。(ii)假设当n=k(k1)时,式成立,即(1+1)(1+)(1+).那么,当n=k+1时,(1+1)(1+)(1+)1+(1+)=(2k+2)。(2k+2)2()2,.因而 这就是说式当n=k+1时也成立.由(i),(ii)知式对任何正整数n都成立.由此证得:Snlgbn+1。评述:本题主要考查等差数列的求和公式的求解和应用,对一些综合性的问题要先理清思路再行求解。题型7:等差数列的性质及变形公式例13(1)(2002上海春,16)设an(nN*)是等差数列,Sn是其前n项的和,且S5S6,S6S7S8,则下列结论错误的是( )A.d0B.a70C.S9S5D.S6与S7均为Sn的最大值(2)(1994全国理,12)等差数列an的前m项和为30,前2m项和为100,则它的前3m项和为( )A.130 B.170 C.210 D.260解析:(1)答案:C;由S5S6得a1+a2+a3+a50,又S6=S7,a1+a2+a6=a1+a2+a6+a7,a7=0,由S7S8,得a8S5,即a6+a7+a8+a902(a7+a8)0,由题设a7=0,a8 c,b + c a,c + a b,ab c,bc b;(3)边与角关系:正弦定理 (R为外接圆半径);余弦定理 c2 = a2+b22bccosC,b2 = a2+c22accosB,a2 = b2+c22bccosA;它们的变形形式有:a = 2R sinA,。5三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。(1)角的变换因为在ABC中,A+B+C=,所以sin(A+B)=sinC;cos(A+B)=cosC;tan(A+B)=tanC。;(2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。r为三角形内切圆半径,p为周长之半。(3)在ABC中,熟记并会证明:A,B,C成等差数列的充分必要条件是B=60;ABC是正三角形的充分必要条件是A,B,C成等差数列且a,b,c成等比数列。四典例解析题型1:正、余弦定理例1(1)在中,已知,cm,解三角形;(2)在中,已知cm,cm,解三角形(角度精确到,边长精确到1cm)。解析:(1)根据三角形内角和定理,;根据正弦定理,;根据正弦定理,(2)根据正弦定理,因为,所以,或当时, ,当时, ,点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器。例2(1)在ABC中,已知,求b及A;(2)在ABC中,已知,解三角形解析:(1)=cos=求可以利用余弦定理,也可以利用正弦定理:解法一:cos解法二:sin又,即(2)由余弦定理的推论得:cos;cos;点评:应用余弦定理时解法二应注意确定A的取值范围。题型2:三角形面积例3在中,求的值和的面积。解法一:先解三角方程,求出角A的值。 又, , 。 解法二:由计算它的对偶关系式的值。 , +得。 得。从而。以下解法略去。点评:本小题主要考查三角恒等变形、三角形面积公式等基本知识,着重数学考查运算能力,是一道三角的基础试题。两种解法比较起来,你认为哪一种解法比较简单呢?例4(06年湖南)已知ABC的三个内角A、BC成等差数列,其外接圆半径为1,且有。(1)求A、BC的大小;(2)求ABC的的面积。解析:A+B+C=180且2B=A+C,B=60,A+C=120,C=120A。,=, 又0A180,A=60或A=105,当A=60时,B=60,C=60,当A=105时,B=60,C=15,点评:要善于借助三角形内的部分变形条件,同时兼顾三角形的面积公式求得结果。题型3:与三角形边角相关的问题例5(1)(2005江苏5)ABC中,则ABC的周长为( )A BC D(2)(06年全国2文,17)在,求(1)(2)若点解析:(1)答案:D解析:在中,由正弦定理得:化简得AC=,化简得AB=,所以三角形的周长为:3+AC+AB=3+=3+。故选D。(2)解:(1)由,由正弦定理知,(2),。由余弦定理知:点评:本题考查了在三角形正弦定理的的运用,以及三角公式恒等变形、化简等知识的运用。例6在锐角中,角所对的边分别为,已知,(1)求的值;(2)若,求的值。解析:(1)因为锐角ABC中,ABCp,所以cosA,则(2),则bc3。将a2,cosA,c代入余弦定理:中,得解得b。点评:知道三角形边外的元素如中线长、面积、周长等时,灵活逆用公式求得结果即可。题型4:三角形中求值问题例7的三个内角为,求当A为何值时,取得最大值,并求出这个最大值。解析:由A+B+C=,得=,所以有cos =sin。cosA+2cos =cosA+2sin =12sin2 + 2sin=2(sin )2+ ;当sin = ,即A=时, cosA+2cos取得最大值为。点评:运用三角恒等式简化三角因式最终转化为关于一个角的三角函数的形式,通过三角函数的性质求得结果。例8(06四川文,18)已知A、B、C是三内角,向量,且,()求角A;()若解析:() ,即,;,。()由题知,整理得, ;或,而使,舍去;。点评:本小题主要考察三角函数概念、同角三角函数的关系、两角和与差的三角函数的公式以及倍角公式,考察应用、分析和计算能力。题型5:三角形中的三角恒等变换问题例9在ABC中,a、b、c分别是A、B、C的对边长,已知a、b、c成等比数列,且a2c2=acbc,求A的大小及的值。分析:因给出的是a、b、c之间的等量关系,要求A,需找A与三边的关系,故可用余弦定理。由b2=ac可变形为=a,再用正弦定理可求的值。解法一:a、b、c成等比数列,b2=ac。又a2c2=acbc,b2+c2a2=bc。在ABC中,由余弦定理得:cosA=,A=60。在ABC中,由正弦定理得sinB=,b2=ac,A=60,=sin60=。解法二:在ABC中,由面积公式得bcsinA=acsinB。b2=ac,A=60,bcsinA=b2sinB。=sinA=。评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理。例10(2002京皖春,17)在ABC中,已知A、B、C成等差数列,求的值。解析:因为A、B、C成等差数列,又ABC180,所以AC120,从而60,故tan.由两角和的正切公式,得。所以。点评:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解,同时结合三角变换公式的逆用。题型6:正、余弦定理判断三角形形状例11(2002上海春,14)在ABC中,若2cosBsinAsinC,则ABC的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形答案:C解析:2sinAcosBsin(AB)sin(AB)又2sinAcosBsinC,sin(AB)0,AB点评:本题考查了三角形的基本性质,要求通过观察、分析、判断明确解题思路和变形方向,通畅解题途径。例12(06安徽理,11)如果的三个内角的余弦值分别等于的三个内角的正弦值,则( )A和都是锐角三角形B和都是钝角三角形C是钝角三角形,是锐角三角形D是锐角三角形,是钝角三角形解析:的三个内角的余弦值均大于0,则是锐角三角形,若是锐角三角形,由,得,那么,所以是钝角三角形。故选D。点评:解决此类问题时要结合三角形内角和的取值问题,同时注意实施关于三角形内角的一些变形公式。北2010ABC题型7:正余弦定理的实际应用例13(06上海理,18)如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1)?解析:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论