




免费预览已结束,剩余33页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9 3圆与圆的方程 2 知识梳理 双基自测 2 1 自测点评 1 圆的几何特征和圆的方程 1 几何特征 圆上任一点到圆心的距离等于定长 定长就是半径 2 圆的标准方程 圆心为 a b 半径是r的圆的标准方程为 x a 2 y b 2 r2 圆心在坐标原点时的圆的方程为x2 y2 r2 3 圆的一般方程为x2 y2 Dx Ey F 0 当D2 E2 4F 0时 它不表示任何图形 3 知识梳理 双基自测 自测点评 2 1 2 点与圆的位置关系平面上的一点M x0 y0 与圆C x a 2 y b 2 r2之间存在着下列关系 1 d r M在圆外 即 x0 a 2 y0 b 2 r2 M在圆外 2 d r M在圆上 即 x0 a 2 y0 b 2 r2 M在圆上 3 d r M在圆内 即 x0 a 2 y0 b 2 r2 M在圆内 4 已知点A x1 y1 B x2 y2 则以AB为直径的圆的方程是 x x1 x x2 y y1 y y2 0 5 方程x2 Bxy y2 Dx Ey F 0表示圆的充要条件是B 0 D2 E2 4F 0 2 4 知识梳理 双基自测 3 4 1 5 自测点评 答案 1 下列结论正确的画 错误的画 1 已知圆的方程为x2 y2 2y 0 过点A 1 2 作该圆的切线只有一条 2 方程 x a 2 y b 2 t2 t R 表示圆心为 a b 半径为t的一个圆 5 知识梳理 双基自测 自测点评 2 3 4 1 5 2 圆心在y轴上 且过点 1 2 并与x轴相切的圆的标准方程为 答案 解析 6 知识梳理 双基自测 自测点评 2 3 4 1 5 3 经过三点 2 1 5 0 6 1 的圆的一般方程为 答案 解析 7 知识梳理 双基自测 自测点评 2 3 4 1 5 4 圆心在直线x 2y 0上的圆C与y轴的正半轴相切 圆C截x轴所得弦的长为2 则圆C的标准方程为 答案 解析 8 知识梳理 双基自测 自测点评 2 3 4 1 5 5 已知等腰三角形ABC 其中顶点A的坐标为 0 0 底边的一个端点B的坐标为 1 1 则另一个端点C的轨迹方程为 答案 解析 9 知识梳理 双基自测 自测点评 1 求圆的标准方程 一定要抓住圆的圆心和半径两个核心要素 2 配方法在圆的一般方程化为标准方程时起关键作用 因此要熟练掌握 3 求轨迹方程时 一定要结合已知条件进行检验 以防漏解或增解 10 考点1 考点2 考点3 例1 1 已知圆C与直线x y 0及x y 4 0都相切 圆心在直线x y 0上 则圆C的方程为 A x 1 2 y 1 2 2B x 1 2 y 1 2 2C x 1 2 y 1 2 2D x 1 2 y 1 2 2 2 经过P 2 4 Q 3 1 两点 且在x轴上截得的弦长等于6的圆的方程为 思考求圆的方程有哪些常见方法 答案 1 B 2 x2 y2 2x 4y 8 0或x2 y2 6x 8y 0 11 考点1 考点2 考点3 解析 1 方法一 设出圆心坐标 根据该圆与两条直线都相切列方程即可 即 a a 2 解得a 1 故圆C的方程为 x 1 2 y 1 2 2 方法二 题目给出的圆的两条切线是平行线 故圆的直径就是这两条平行线之间的距离 圆心是直线x y 0被这两条平行线所截线段的中点 直线x y 0与直线x y 0的交点坐标是 0 0 与直线x y 4 0的交点坐标是 2 2 故所求圆的圆心坐标是 1 1 所求圆C的方程是 x 1 2 y 1 2 2 12 考点1 考点2 考点3 方法三 作为选择题也可以验证解答 圆心在x y 0上 排除选项C D 再验证选项A B中圆心到两直线的距离是否等于半径2即可 2 设圆的方程为x2 y2 Dx Ey F 0 将P Q两点的坐标分别代入得又令y 0 得x2 Dx F 0 设x1 x2是方程 的两根 由 x1 x2 6可得D2 4F 36 由 解得D 2 E 4 F 8 或D 6 E 8 F 0 故所求圆的方程为x2 y2 2x 4y 8 0或x2 y2 6x 8y 0 13 考点1 考点2 考点3 解题心得求圆的方程时 应根据条件选用合适的圆的方程 一般来说 求圆的方程有两种方法 1 几何法 通过研究圆的性质进而求出圆的基本量 确定圆的方程时 常用到的圆的三个性质 圆心在过切点且垂直切线的直线上 圆心在任一弦的中垂线上 两圆内切或外切时 切点与两圆圆心共线 2 代数法 即设出圆的方程 用待定系数法求解 14 考点1 考点2 考点3 对点训练1 1 过点A 4 1 的圆C与直线x y 1 0相切于点B 2 1 则圆C的方程为 2 在平面直角坐标系xOy中 曲线y x2 6x 1与坐标轴的交点都在圆C上 则圆C的方程为 答案 1 x 3 2 y2 2 2 x 3 2 y 1 2 9 15 考点1 考点2 考点3 解析 1 方法一 由已知kAB 0 所以AB的中垂线方程为x 3 过B点且垂直于直线x y 1 0的直线方程为y 1 x 2 即x y 3 0 所以圆C的方程为 x 3 2 y2 2 16 考点1 考点2 考点3 17 考点1 考点2 考点3 18 考点1 考点2 考点3 解 1 设P x y 圆P的半径为r 则y2 2 r2 x2 3 r2 故y2 2 x2 3 即y2 x2 1 故P点的轨迹方程为y2 x2 1 2 设P的坐标为 x0 y0 因此圆P的方程为x2 y 1 2 3 19 考点1 考点2 考点3 当y0 x0 1时 因此圆P的方程为x2 y 1 2 3 综上所述 圆P的方程为x2 y 1 2 3 20 考点1 考点2 考点3 解题心得1 求与圆有关的轨迹问题时 根据题设条件的不同常采用以下方法 1 直接法 直接根据题目提供的条件列出方程 2 定义法 根据圆 直线等定义列方程 3 几何法 利用圆的几何性质列方程 4 代入法 找到要求点与已知点的关系 代入已知点满足的关系式等 2 求与圆有关的轨迹问题时 题目的设问有两种常见形式 作答也应不同 若求轨迹方程 则把方程求出化简即可 若求轨迹 则必须根据轨迹方程 指出轨迹是什么曲线 21 考点1 考点2 考点3 对点训练2已知圆x2 y2 4上一定点A 2 0 B 1 1 为圆内一点 P Q为圆上的动点 1 求线段AP中点的轨迹方程 2 若 PBQ 90 求线段PQ中点的轨迹方程 22 考点1 考点2 考点3 解 1 设AP的中点为M x y 由中点坐标公式可知 P点坐标为 2x 2 2y 因为P点在圆x2 y2 4上 所以 2x 2 2 2y 2 4 即 x 1 2 y2 1 故线段AP中点的轨迹方程为 x 1 2 y2 1 2 设PQ的中点为N x y 在Rt PBQ中 PN BN 设O为坐标原点 连接ON 则ON PQ 所以 OP 2 ON 2 PN 2 ON 2 BN 2 所以x2 y2 x 1 2 y 1 2 4 故线段PQ中点的轨迹方程为x2 y2 x y 1 0 23 考点1 考点2 考点3 24 考点1 考点2 考点3 25 考点1 考点2 考点3 考向二截距型最值问题例4在例3的条件下求y x的最大值和最小值 思考如何求解形如ax by的最值问题 26 考点1 考点2 考点3 27 考点1 考点2 考点3 考向三距离型最值问题例5在例3的条件下求x2 y2的最大值和最小值 思考如何求解形如 x a 2 y b 2的最值问题 解如图所示 x2 y2表示圆上的一点与原点距离的平方 由平面几何知识知 在原点和圆心连线与圆的两个交点处取得最大值和最小值 28 考点1 考点2 考点3 考向四建立目标函数求最值问题例6设圆x2 y2 2的切线l与x轴正半轴 y轴正半轴分别交于点A B 当 AB 取最小值时 切线l的方程为 思考如何借助圆的几何性质求有关线段长的最值 答案 x y 2 0 29 考点1 考点2 考点3 30 考点1 考点2 考点3 解题心得求解与圆有关的最值问题的两大规律 1 借助几何性质求最值 形如的最值问题 可转化为定点 a b 与圆上的动点 x y 的斜率的最值问题 形如t ax by的最值问题 可转化为动直线的截距的最值问题 形如u x a 2 y b 2的最值问题 可转化为动点到定点的距离的平方的最值问题 2 建立函数关系式求最值根据题目条件列出关于所求目标式子的函数关系式 然后根据关系式的特征选用参数法 配方法 判别式法等 利用基本不等式求最值是比较常用的 31 考点1 考点2 考点3 2 已知实数x y满足 x 2 2 y 1 2 1 则2x y的最大值为 最小值为 3 已知P x y 在圆C x 1 2 y 1 2 1上移动 则x2 y2的最小值为 4 设P为直线3x 4y 11 0上的动点 过点P作圆C x2 y2 2x 2y 1 0的两条切线 切点分别为A B 则四边形PACB的面积的最小值为 32 考点1 考点2 考点3 33 考点1 考点2 考点3 34 考点1 考点2 考点3 求半径常有以下方法 1 若已知直线与圆相切 则圆心到切点 或切线 的距离等于半径 2 若已知弦长 弦心距 半径 则可利用弦长的一半 弦心距 半径三者满足勾股定理的关系求得 35 考点1 考点2 考点3 1 求圆的方程需要三个独立条件 因此不论选用哪种形式的圆的方程都要列出三个独立的关系式 2 解答与圆有关的最值问题一般要结合代数式的几何意义进行 注意数形结合 充分运用圆的性质 3 解决与圆有关的轨迹问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重大危险源施工方案
- 数据知识产权师培训课程课件
- 虎年联欢活动方案策划
- 劳动教育体系构建与实践探索
- 教育活动方案策划说明
- 园艺户外遮阳产品创新创业项目商业计划书
- 翻译管理中的敏捷待办事项列表创新创业项目商业计划书
- 自动化检测与测试软件创新创业项目商业计划书
- 电商品牌用户反馈管理系统创新创业项目商业计划书
- 智能安全预警与控制软件创新创业项目商业计划书
- 急性阑尾炎病人护理课件
- 2025总公司授权分公司签订合同的示范文本
- 2025年医师定期考核法律法规试题及答案
- 学堂在线 大学计算机基础 章节测试答案
- 骨科手术切口感染的预防与控制
- 县域共配仓农村物流配送成本控制报告
- 二级实验室生物安全管理手册
- 2025年新演员签约协议书
- 电子信息类专业导论(第3版)课件全套 张有光 00 课程简介 - 12 中国大学教育:理念与实践
- 2025届安徽省A10联盟高三上学期开学考-物理试题(含答案)
- 全国“安康杯”职工安全健康意识与应急技能知识竞赛试卷附答案
评论
0/150
提交评论