3. 4函数单调性与曲线的凹凸性_第1页
3. 4函数单调性与曲线的凹凸性_第2页
3. 4函数单调性与曲线的凹凸性_第3页
3. 4函数单调性与曲线的凹凸性_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3. 4 函数单调性与曲线的凹凸性一 教学目的(一)知识目的(1)了解函数单调性与曲线的凹凸性的有关概念;(2)会利用导数判断函数图形的凹凸性和拐点;(二)能力目标(1)培养学生将实际问题转化为数学问题的能力;(2)培养学生观察、比较、抽象、概括的能力;(3)训练学生思维的灵活性。(三)德育目标(1)激发学生的内在动机;(2)养成良好的学习习惯。二 教学的重、难点及教学设计(一) 教学重点:应用导数判断函数单调性与曲线的凹凸性(二) 教学难点:用导数判断函数单调性与曲线的凹凸性方法的推导(三) 教学设计要点:1用导数判断函数的单调性;2用导数判断函数图形的凹凸性和拐点;3单调性及凹凸性的应用;三 教学过程1、函数单调性的判定法 如果函数y=f(x)在a , b上单调增加(单调减少), 那么它的图形是一条沿x 轴正向上升(下降)的曲线. 这时曲线的各点处的切线斜率是非负的(是非正的), 即y=f (x)0(y=f (x)0). 由此可见, 函数的单调性与导数的符号有着密切的关系. 反过来, 能否用导数的符号来判定函数的单调性呢? 定理1(函数单调性的判定法) 设函数y=f(x)在a, b上连续, 在(a, b)内可导. (1)如果在(a, b)内f (x)0, 那么函数y=f(x)在a, b上单调增加; (2)如果在(a, b)内f (x)0, 那么函数y=f(x)在a, b上单调减少. 证明 只证(1). 在a, b上任取两点x1 , x2 (x1 x2 ), 应用拉格朗日中值定理, 得到f(x2 )-f(x1 )=f (x)(x2-x1) (x1 x0, 因此, 如果在(a, b)内导数f (x)保持正号, 即f (x)0, 那么也有f (x)0. 于是 f(x2 )-f(x1 )=f (x)(x2 -x1 )0, 即 f(x1 )0, 所以由判定法可知函数y=x-cos x 在0, 2p上的单调增加. 例2 讨论函数y=e x -x-1的单调性. (没指明在什么区间怎么办?) 解 y=e x -1. 函数y=e x -x-1的定义域为(-, +). 因为在(-, 0)内y0, 所以函数y=e x -x-1在0, +)上单调增加. 例3. 讨论函数的单调性. 解: 函数的定义域为(-, +). 函数的导数为 (x0), 函数在x=0处不可导. 当x=0时, 函数的导数不存在. 因为x0时, y0时, y0, 所以函数在0, +)上单调增加. 如果函数在定义区间上连续, 除去有限个导数不存在的点外导数存在且连续, 那么只要用方程f (x)=0的根及导数不存在的点来划分函数f(x)的定义区间, 就能保证f (x)在各个部分区间内保持固定的符号, 因而函数f(x)在每个部分区间上单调. 例4. 确定函数f(x)=2x3-9x2+12x-3的单调区间. 解 这个函数的定义域为:(-, +). 函数的导数为:f (x)=6x2 -18x +12 = 6(x-1)(x-2). 导数为零的点有两个: x1 =1、x2 =2. 列表分析: (-, 11, 22, +)f (x)+-+f(x)函数f(x)在区间(-, 1和2, +)内单调增加, 在区间1, 2上单调减少. 例5. 讨论函数y=x3的单调性. 解 函数的定义域为: (-, +). 函数的导数为: y=3x2 . 除当x=0时, y=0外, 在其余各点处均有y0. 因此函数y=x 3在区间(-, 0及0, +)内都是单调增加的. 从而在整个定义域: (-, +)内是单调增加的. 在x=0处曲线有一水平切线. 一般地, 如果f (x)在某区间内的有限个点处为零, 在其余各点处均为正(或负)时, 那么f(x)在该区间上仍旧是单调增加(或单调减少)的. 例6. 证明: 当x1时, . 证明: 令, 则 . 因为当x1时, f (x)0, 因此f(x)在1, +)上f(x)单调增加, 从而当x1时, f(x)f(1). 由于f(1)=0, 故f(x)f(1)=0, 即 , 也就是(x1). 二、曲线的凹凸与拐点 定义 (凹凸性)设f(x)在区间I上连续, 如果对I上任意两点x 1, x 2, 恒有, 那么称f(x)在I上的图形是(向上)凹的(或凹弧); 如果恒有, 那么称f(x)在I上的图形是(向上)凸的(或凸弧). 定义 设函数y=f(x)在区间I上连续, 如果函数的曲线位于其上任意一点的切线的上方,则称该曲线在区间I上是凹的;如果函数的曲线位于其上任意一点的切线的下方,则称该曲线在区间I上是凸的. 凹凸性的判定: 定理 设f(x)在a, b上连续, 在(a, b)内具有一阶和二阶导数, 那么 (1)若在(a, b)内f (x)0, 则f(x)在a, b上的图形是凹的; (2)若在(a, b)内f (x)0, 则f(x)在a, b上的图形是凸的. 简要证明 只证(1). 设x1, x2a, b, 且x1x2, 记. 由拉格朗日中值公式, 得 , , , , 两式相加并应用拉格朗日中值公式得 , , 即, 所以f(x)在a, b上的图形是凹的. 拐点: 连续曲线y=f(x)上凹弧与凸弧的分界点称为这曲线的拐点. 确定曲线y=f(x)的凹凸区间和拐点的步骤: (1)确定函数y=f(x)的定义域; (2)求出在二阶导数f (x); (3)求使二阶导数为零的点和使二阶导数不存在的点; (4)判断或列表判断, 确定出曲线凹凸区间和拐点; 注: 根据具体情况(1)(3)步有时省略. 例1. 判断曲线y=ln x 的凹凸性. 解: , . 因为在函数y=ln x的定义域(0, +)内, y0, 所以曲线y=ln x是凸的. 例2. 判断曲线y=x3的凹凸性. 解: y=3x 2, y=6x . 由y=0, 得x=0. 因为当x0时, y0时, y0, 所以曲线在0, +)内为凹的. 例3. 求曲线y=2x 3+3x 2-2x+14的拐点. 解: y=6x 2+6x-12, . 令y=0, 得. 因为当时, y0, 所以点(, )是曲线的拐点. 例4. 求曲线y=3x 4-4x 3+1的拐点及凹、凸的区间. 解: (1)函数y=3x 4-4x 3+1的定义域为(-, +); (2),; (3)解方程y=0, 得, ; (4)列表判断: (-, 0) 0 (0, 2/3) 2/3 (2/3, +) f (x) + 0 - 0 + f(x) 1 11/27 在区间(-, 0和2/3, +)上曲线是凹的, 在区间0, 2/3上曲线是凸的. 点(0, 1)和(2/3, 11/27)是曲线的拐点. 例5 问曲线y=x 4是否有拐点?解 y=4x 3, y=12x 2. 当x 0时, y0, 在区间(-, +)内曲线是凹的,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论