




免费预览已结束,剩余32页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
23(14分)如圈1,RtABC中,ACB=90,点D为边AC上一点,DEAB于点E,点M为BD中点,CM的延长线交AB于点F(1)求证:CM=EM;(2)若BMC=50EMF的大小;ABCDMEFN图2ABCDEFM图1(3)如图2,若DAECEM,点N为CM的中点求证:ANEM23(12分)如图,在四边形ABCD中,B=C=90,ABCD,AD=AB+CD(1)利用尺规作ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(1)用尺规在图中作出 CD 边上的中点 E ,连接 AE、BE (保留作图痕迹,不 写作法);(2)如图,在(1)的条件下,判断 EB 是否平分 AEC ,并说明理由;(3)如图,在(2)的条件下,连接 EP 并延长交 AB 的延长线于点 F ,连接 AP ,不添加辅助线, DPFB 能否由都经过 P 点的两次变换与 DPAE 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向或平移方向和平移距离)图11CBAD23(12分)如图11,在四边形ABCD中,B=C=,ABCD,AD=AB+CD (1)利用尺规作ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下证明:AEDE;若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+ACN的最小值25(14分)如图,在四边形ABCD中,B=60,D=30,AB=BC(1)求A+C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度25已知,斜边,将绕点顺时针旋转,如题图,连接(1)填空:;(2)如题图,连接,作,垂足为,求的长度;(3)如题图,点同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为,点的运动速度为,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?24.(10 分)如图,正方形 ABCD 的对角线交于点 O,点 E、F 分别在 AB、BC 上(AEBE),且EOF=90,OE、DA 的延长线交于点 M,OF、AB 的延长线交于点 N,连接 MN.(1) 求证:0M=ON.(2) 若正方形 ABCD 的边长为 4,E 为 OM 的中点,求 MN 的长.26(16分)如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动(1)点P到达终点O的运动时间是 s,此时点Q的运动距离是 cm;(2)当运动时间为2s时,P、Q两点的距离为 cm;(3)请你计算出发多久时,点P和点Q之间的距离是10cm;(4)如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线y=过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值23(满分 13 分)已知,如图 11-1,在ABCD 中,点 E 是 AB 中点,连接 DE 并延长,交CB 的延长线于点 F(1)求证:ADEBFE;(2)如图 11-2,点 G 是边 BC 上任意一点(点 G 不与点 B、C 重合),连接 AG 交 DF 于 点 H,连接 HC,过点 A 作 AKHC,交 DF 于点 K.求证:HC=2AK;当点 G 是边 BC 中点时,恰有 HD=nHK( n 为正整数),求 n 的值22(10分)(1)问题发现如图1,在OAB和OCD中,OA=OB,OC=OD,AOB=COD=40,连接AC,BD交于点M填空:的值为 ; AMB的度数为 (2)类比探究如图2,在OAB和OCD中,AOB=COD=90,OAB=OCD=30,连接AC交BD的延长线于点M请判断的值及AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长已知:在平面直角坐标系中,点0为坐标原点,点A在x轴的负半轴上,直线与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为ACD内一点,连接AP、BP,BP与AC交于点G,且APB=60,点E在线段AP上,点F在线投BP上,且BF=AE.连接AF、EF,若AFE=30,求AF+EF的值;(3)如图3在(2)的条件下,当PE=AE时,求点P的坐标.已知:O是正方形ABCD的外接圆,点E在弧AB上,连接BE、DE,点F在弧AD上,连接BF,DF,BF与DE、DA分别交于点G、点H,且DA平分EDF.(1)如图1,求证:CBE=DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HKBN交DE于点K,过点E作EPBN垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交0于点R,连接BR,若BER的面积与DHK的面积的差为,求线段BR的长.已知:在四边形ABCD中,对角线AC、BD相交于点E,且ACBD,作BFCD垂足为点F,BF与AC交于点G.BGE=ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于ADE面积的2倍.24(14分)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,C=120,边长OA=8点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边ABBCCO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设APN的面积为S,求S与t的函数关系式及t的取值范围24、(本小题9分)在ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).(1)如图1,若EFBC,求证:(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF上一点G恰为ABC的重心,,求的值.(第24题图1)(第24题图2)(第24题图3)24.已知正方形与正方形,是的中点,连接,.(1)如图,点在上,点在的延长线上,请判断,的数量关系与位置关系,并直接写出结论;(2)如图,点在的延长线上,点在上,(1)中结论是否仍然成立?请证明你的结论;(3)将图中的正方形绕点旋转,使,三点在一条直线上,若,请画出图形,并直接写出的长.23(本题10分)在ABC中,ABC90、(1) 如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:ABMBCN(2) 如图2,P是边BC上一点,BAPC,tanPAC,求tanC的值(3) 如图3,D是边CA延长线上一点,AEAB,DEB90,sinBAC,直接写出tanCEB的值 23.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:如图1,已知在正方形网格中,请你只用无刻度的直尺在网格中找到一点,使四边形是以为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(1) 如图2,在四边形中,对角线平分.求证:是四边形的“相似对角线”;运用:(3)如图3,已知是四边形的“相似对角线”,.连接,若的面积为,求的长.如图(1),已知点G在正方形ABCD的对角线AC上,GEBC,垂足为点E,GFCD, 垂足为点F(1)证明与推断:求证:四边形CEGF是正方形; 推断:的值为 ;(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转角(045),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H若AG=6,GH=2,则BC= 23(11分)在矩形ABCD中,AB=12,P是边AB上一点,把PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BECG,垂足为E且在AD上,BE交PC于点F(1)如图1,若点E是AD的中点,求证:AEBDEC;(2)如图2,求证:BP=BF;当AD=25,且AEDE时,求cosPCB的值;当BP=9时,求BEEF的值26(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DHAE于H,设直线DH交AC于N(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当ENBD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NEEC时,求证:AN2=NCAC24(12分)如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(6,0),B(0,4)过点C(6,1)的双曲线y=(k0)与矩形OADB的边BD交于点E(1)填空:OA= ,k= ,点E的坐标为 ;(2)当1t6时,经过点M(t1,t2+5t)与点N(t3,t2+3t)的直线交y轴于点F,点P是过M,N两点的抛物线y=x2+bx+c的顶点当点P在双曲线y=上时,求证:直线MN与双曲线y=没有公共点;当抛物线y=x2+bx+c与矩形OADB有且只有三个公共点,求t的值;当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积26(12分)如图,在RtABC中,C=90,AC=BC=4cm,动点P从点C出发以1cm/s的速度沿CA匀速运动,同时动点Q从点A出发以cm/s的速度沿AB匀速运动,当点P到达点A时,点P、Q同时停止运动,设运动时间为t(s)(1)当t为何值时,点B在线段PQ的垂直平分线上?(2)是否存在某一时刻t,使APQ是以PQ为腰的等腰三角形?若存在,求出t的值;若不存在,请说明理由;(3)以PC为边,往CB方向作正方形CPMN,设四边形QNCP的面积为S,求S关于t的函数关系式23(10分)已知在RtABC中,BAC=90,CD为ACB的平分线,将ACB沿CD所在的直线对折,使点B落在点B处,连结AB,BB,延长CD交BB于点E,设ABC=2(045)(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若ABAC,试求CD与BE的数量关系(用含的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(+45),得到线段FC,连结EF交BC于点O,设COE的面积为S1,COF的面积为S2,求(用含的式子表示)24.如图,在ABC中,AB=AC,过AB上一点D作DEAC交BC于点E,以E为顶点, ED为一边,作DEF=A ,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB 中点时,ADEF的形状为 ;(3)延长图中的DE到点G,使EDE,连接AE,AG,FG得到图若AD =AG, 判断四边形AEGF的形状,并说明理由. 25.如图,在矩形ABCD中,AB= 2cm,ADB =30. P,Q两点分别从A,B同时出发,点P沿折线AB-BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动.过点P作PNAD,垂足为点N.连接PQ,以PQ,PN 为邻边作PQMN.设运动的时间为(s),PQMN与矩形ABCD重叠部分的图形面积为(cm2).(1)当PQAB时, = ;(2)求关于的函数解析式,并写出的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出的值.如果三角形的两个内角与满足90,那么我们称这样的三角形为“准互余三角形”(1)若ABC是“准互余三角形”,C90,A60,则B ;(2)如图,在RtABC中,ACB90,AC4,BC5,若AD是BAC的平分线,不难证明ABD是“准互余三角形”试问在边BC上是否存在点E(异于点D),使得ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由(3)如图,在四边形ABCD中,AB7,CD12,BDCD,ABD2BCD,且ABC是“准互余三角形”求对角线AC的长如图,在平面直角坐标系中,一次函数的图像与x轴和y轴分别相交于A、B两点动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN设运动时间为t秒(1)当t秒时,点Q的坐标是 ;(2)在运动过程中,设正方形PQMN与AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OTPT的最小值问题1:如图在ABC中,AB=4,D是AB上点(不与A、B重合),DEBC,交AC于点E,连接CD设ABC的面积为S,DEC的面积为S(1)当AD=3时,=_;(2)设AD=m,请你用含字母m的代数式表示;问题2:如图,在四边形ABCD中,AB4ADBC,ADBC,E是AB上一点(不与A、B重合),FFBC,交CD于点F,连接CE设AE=n,四边形ABCD的面积为S,EFC的面积为S请你利用问题1的解法或结论,用含字母n的代数式表示如图,矩形ABCD中,AB=m,BC=n,将此矩形绕点B顺时针方向旋转(00),GA=y米,已知y与x之间的函数关系如图所示 (1)求图中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即EFG)是否可以是一个等腰三角形?如果可以求出相应x的值;如果不可以,说明埋由24.如图,在平行四边形ABCD中,ACB=45,点E在对角线AC上,BE=BA.BFAC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG, 连接EH.(1)若,AB=13,求AF的长; (2)求证:EB=EH.28.如图1,一副直角三角板满足ABBC,ACDE,ABCDEF90,EDF30【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q【探究一】在旋转过程中,(1) 如图2,当时,EP与EQ满足怎样的数量关系?并给出证明.(2) 如图3,当时EP与EQ满足怎样的数量关系?,并说明理由.(3) 根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式为_,其中的取值范围是_(直接写出结论,不必证明)【探究二】若,AC30cm,连续PQ,设EPQ的面积为S(cm2),在旋转过程中:(1) S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2) 随着S取不同的值,对应EPQ的个数有哪些变化?不出相应S值的取值范围.(图3)(图3)(图2)(图1)如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tanCPN的值方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形观察发现问题中CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MNEC,则DNM=CPN,连接DM,那么CPN就变换到RtDMN中问题解决(1)直接写出图1中tanCPN的值为 ;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cosCPN的值;思维拓展(3)如图3,ABBC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求CPN的度数25阅读下面材料:小明遇到这样一个问题:如图1,ABC中,ACB90,点D在AB上,且BAC2DCB,求证:ACAD小明发现:除了直接用角度的方法外,还可以用下面两种方法:方法1:如图2,作AE平分CAB,与CD相交于点EBADC(图1)(图3)BADCFEBADC(图2)方法2:如图3,作CDF=DCB,与AB相交于点F(1)根据阅读材料,任选一种方法,证明:ACAD;用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,ABC中,点D在AB上,点E在BC上,且BDE2ABC,点F在BD上,且AFEBAC,延长DC、FE,相交于点G,且DGFBDE在图中找出与DEF相等的角,并加以证明;若ABkDF,猜想线段DE与DB数量关系,并证明你的猜想BADCEFG(图4)23如图,在平面直角坐标系中,点F的坐标为(0,10),点E的坐标为(20,0),直线l1经过点F和点E,直线11与直线12:yx相交于点P(1)求直线的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于X轴,且AB6,AD9,将矩形ABCD沿射线FE的方向平移,边AD始终与x轴平行,已知矩形ABCD以每秒个单位的速度匀速移动动(点A移动到点E时停止移动),设移动时间为t秒(t0),矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线11或12上,请直接写出此时t的值;若矩形ABCD在移动的过程中,直线CD交直线11于点N,交直线于点M,当PMN的面积等于18时,请直接写出此时t的值.25(13分)已知,在ABC中,A=90,AB=AC,点D为BC的中点(1)如图,若点E、F分别为AB、AC上的点,且DEDF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DEDF,那么BE=AF吗?请利用图说明理由24已知ABC是等腰三角形,CACB,0ACB90,点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BNAM,连接AN,BM射线AGBC,延长BM交射线AG于点D,点E在直线AN上,且AEDE.(1)如图,当ACB90时,求证:BCMCAN;求BDE的度数;(2)当ACB,其它条件不变时,BDE的度数是(用含的代数式表示)(3)若ABC是等边三角形,AB,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长26.如图:一次函数 y=-34x+3的图象与坐标轴交于A、B两点,点P是函数y=-34x+3(0x4)图象上任意一点,过点P作PMy轴于点M,连接OP.(1)当AP为何值时,OPM的面积最大?并求出最大值;(2)当BOP为等腰三角形时,试确定点P的坐标.24(12分)再读教材:宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计,下面,我们用宽为2的矩形纸片折叠黄金矩形(提示:MN=2)第一步,在矩形纸片一端,利用图的方法折出一个正方形,然后把纸片展平第二步,如图,把这个正方形折成两个相等的矩形,再把纸片展平第三步,折出内侧矩形的对角线AB,并把AB折到图中所示的AD处第四步,展平纸片,按照所得的点D折出DE,使DEND,则图中就会出现黄金矩形问题解决:(1)图中AB= (保留根号);(2)如图,判断四边形BADQ的形状,并说明理由;(3)请写出图中所有的黄金矩形,并选择其中一个说明理由实际操作(4)结合图,请在矩形BCDE中添加一条线段,设计一个新的黄金是形,用字母表示出来,并写出它的长和宽23(10分)问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动如图1,将:矩形纸片ABCD沿对角线AC剪开,得到ABC和ACD并且量得AB=2cm,AC=4cm操作发现:(1)将图1中的ACD以点A为旋转中心,按逆时针方向旋转,使=BAC,得到如图2所示的ACD,过点C作AC的平行线,与DC的延长线交于点E,则四边形ACEC的形状是 (2)创新小组将图1中的ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的ACD,连接CC,取CC的中点F,连接AF并延长至点G,使FG=AF,连接CG、CG,得到四边形ACGC,发现它是正方形,请你证明这个结论实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A点,AC与BC相交于点H,如图4所示,连接CC,试求tanCCH的值24(本题满分10分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在ABC中,点O在线段BC上,BAO=30,OAC=75,AO=,BO:CO=1:3,求AB的长经过社团成员讨论发现,过点B作BDAC,交AO的延长线于点D,通过构造ABD就可以解决问题(如图2)请回答:ADB= ,AB= (2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,ACAD,AO=,ABC=ACB=75, BO:OD=1:3,求DC的长(第24题图3)(第24题图2)(第24题图1)23(11分)如图,ABC中,D是AB上一点,DEAC于点E,F是AD的中点,FGBC于点G,与DE交于点H,若FG=AF,AG平分CAB,连接GE,CD(1)求证:ECGGHD;(2)小亮同学经过探究发现:AD=AC+EC请你帮助小亮同学证明这一结论(3)若B=30,判定四边形AEGF是否为菱形,并说明理由24(12分)已知:如图,四边形ABCD,ABDC,CBAB,AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s点P和点Q同时出发,以QA、QP为边作平行四边形AQPE,设运动的时间为t(s),0t5根据题意解答下列问题:(1)用含t的代数式表示AP;(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;(3)当QPBD时,求t的值;(4)在运动过程中,是否存在某一时刻t,使点E在ABD的平分线上?若存在,求出t的值;若不存在,请说明理由25(12分)如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EFAB,EAB=EBA,过点B作DA的垂线,交DA的延长线于点G(1)DEF和AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与AGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M求证:BM2=MFMH24(12分)如图1,在ABCD中,DHAB于点H,CD的垂直平分线交CD于点E,交AB于点F,AB=6,DH=4,BF:FA=1:5(1)如图2,作FGAD于点G,交DH于点M,将DGM沿DC方向平移,得到CGM,连接MB求四边形BHMM的面积;直线EF上有一动点N,求DNM周长的最小值(2)如图3,延长CB交EF于点Q,过点Q作QKAB,过CD边上的动点P作PKEF,并与QK交于点K,将PKQ沿直线PQ翻折,使点K的对应点K恰好落在直线AB上,求线段CP的长24(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EGCD交AF于点G,连接DG(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长23(9分)(1)操作发现:如图,小明画了一个等腰三角形ABC,其中AB=AC,在ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN小明发现了:线段GM与GN的数量关系是 ;位置关系是 (2)类比思考:如图,小明在此基础上进行了深入思考把等腰三角形ABC换为一般的锐角三角形,其中ABAC,其它条件不变,小明发现的上述结论还成立吗?请说明理由(3)深入研究:如图,小明在(2)的基础上,又作了进一步的探究向ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断GMN的形状,并给与证明22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形中,是延长线上一点,且,连接,交于点,以为一边在的左下方作正方形,连接.试判断线段与的位置关系.探究展示:勤奋小组发现,垂直平分,并展示了如下的证明方法:证明:,.,.四边形是矩形,.(依据1),.即是的边上的中线,又,.(依据2)垂直平分.反思交流:(1)上述证明过程中的“依据1”“依据2”分别是指什么?试判断图1中的点是否在线段的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接,以为一边在的左下方作正方形,发现点在线段的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接,以为一边在的右上方作正方形,可以发现点,点都在线段的垂直平分线上,除此之外,请观察矩形和正方形的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明. 25(本题满分14分,第(1)小题满分4分,笫(2)小题满分5分,第(3) 小题满分小题5分)已知O的直径AB=2,弦AC与弦BD交于点E,且ODAC,垂足为点F(1)如图11,如果AC=BD,求弦AC的长;(2)如图12,如果E为弦BD的中点,求ABD的余切值;(3)连接BC、CD、DA,如果BC是O的内接正n边形的一边,CD是O的内接正(n+4)边形的一边,求ACD的面积ABO备用图OBACDEF图12ABCDFEO图11如图,在ABCD中,点E是CD的中点,点F是BC边上的点,AFADFCABCD的面积为S,由A、E、F三点确定的圆的周长为l(1)若ABE的面积为30,直按写出S的值;BADCEF(2)求证:AE平分DAF;(3)若AEBE,AB4,AD5,求l的值25(本题满分12分)问题提出 (1)如图,在ABC中,A120,ABAC5,则ABC的外接圆半径R的值为问题探究 (2)如图,O的半径为13,弦AB24,M是AB的中点,P是O上一动点,求PM的最大值问题解决 (3)如图所示,AB、AC、BC是某新区的三条规划路其中,AB6km,AC3km,BAC60,BC所对的圆心角为60新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F也就是,分别在BC线段AB和AC上选取点P、E、F由于总站工作人员每天要将物资在各物资站点间按PEFP的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PEEFFP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计)图图图27(10分)在RtABC中,ABC=90,AB=,AC=2,过点B作直线mAC,将ABC绕点C顺时针旋转得到ABC(点A,B的对应点分别为A,B),射线CA,CB分別交直线m于点P,Q(1)如图1,当P与A重合时,求ACA的度数;(2)如图2,设AB与BC的交点为M,当M为AB的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA,CB的延长线上时,试探究四边形PABQ的面积是否存在最小值若存在,求出四边形PABQ的最小面积;若不存在,请说明理由22(8分)如图,在平面直角坐标系中,点O1的坐标为(4,0),以点O1为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成60的角,且交y轴于C点,以点O2(13,5)为圆心的圆与x轴相切于点D(1)求直线l的解析式;(2)将O2以每秒1个单位的速度沿x轴向左平移,当O2第一次与O1外切时,求O2平移的时间24(12分)如图,已知ABC的顶点坐标分别为A(3,0),B(0,4),C(3,0)动点M,N同时从A点出发,M沿AC,N沿折线ABC,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动的时间记为t秒连接MN(1)求直线BC的解析式;(2)移动过程中,将AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标;(3)当点M,N移动时,记ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式24. 在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点,的对应点分别为,.()如图,当点落在边上时,求点的坐标;()如图,当点落在线段上时,与交于点.求证;求点的坐标.()记为矩形对角线的交点,为的面积,求的取值范围(直接写出结果即可).23(本小题12分)如图1在矩形ABCD中,P为CD边上一点(DPCP)APB90将ADP沿AP翻折得到ADP,PD 的延长线交边AB于点M,过点B作BNMP交DC于点N(1)求证:AD2DPPC(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别别交PM,PB于点E,F若=,求的值FABCDPMNDE(图2)(图1)ABCDPMND23.如图,在正方形ABCD中,点G在边BC上(不与点B、C重合),连接AG,作DEAG,于点E,BFAG于点F,设(1)求证:AE=BF(2)连接BE、DF,设,求证:(3)设线段AG与对角线BD交于点H, 和四边形CDHG的面积分别为,求的最大值.24(12分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”(1)概念理解:如图1,在ABC中,AC=6,BC=3,ACB=30,试判断ABC是否是”等高底”三角形,请说明理由(2)问题探究:如图2,ABC是“等高底”三角形,BC是”等底”,作ABC关于BC所在直线的对称图形得到ABC,连结AA交直线BC于点D若点B是AAC的重心,求的值(3)应用拓展:如图3,已知l1l2,l
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南省通海县2025年上半年事业单位公开遴选试题含答案分析
- 云南省建水县2025年上半年事业单位公开遴选试题含答案分析
- 云南省福贡县2025年上半年事业单位公开遴选试题含答案分析
- 梦想总会实现!中英互译
- 河北省威县2025年上半年公开招聘城市协管员试题含答案分析
- GB∕T 44927-2024 《知识管理体系 要求》之22:9绩效评价-9.2内部审核专业深度解读和应用指导材料(雷泽佳编制-2025A0)
- 2025版淘宝商家网络营销与推广合同
- 2025房地产分销合作协议范本:精准营销服务
- 2025年度食品行业展会代理服务合作协议书
- 2025年二婚离婚协议书起草及执行细则范本
- 维生素D与女性生殖健康的预防
- DB13-T 5838-2023大型会展活动临建设施安全、绿色管理通用要求
- 创伤失血性休克中国急诊专家共识(2023)解读
- 材料风险调差表
- (订正版)全面质量管理知识习题集大全(含答案)
- 武汉市古树名木资源调查报告
- 主变压器安装施工方案完整版本
- 高中音乐-《国歌里的故事》教学课件设计
- 深度学习教学改进丛书 深度学习:走向核心素养(理论普及读本)
- 大众Polo 2014款说明书
- 人民医院整形外科临床技术操作规范2023版
评论
0/150
提交评论