



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形全等的判定(1)学习目标:(1)熟记边角边公理的内容;(2)能应用边角边公理证明两个三角形全等;(3)通过观察几何图形,培养学生的识图能力。教学重点:学会运用边角边公理证明两个三角形全等。教学难点:SAS公理的灵活运用。教学过程:一、预习反馈:1. 的三角形,叫做全等三角形。2.当两个全等三角形完全重合时, 叫做对应顶点, 叫做对应边, 叫做对应角。3.ABC与DEF是全等三角形,记作 。(注:把对应顶点的字母写在对应位置上。)4.全等三角形的性质: 。引入:全等三角形的判定,除了定义,还有没有其他更为简便的判定方法呢?二、探索公理1. 实验与探究已知在ABC中,B=70, AB=8厘米,BC=10厘米,根据上述条件,我们能画出一个三角形吗?如果能,我们应该如何操作?(1) 在纸上画出满足上述条件的ABC;(2) 剪下你画出的三角形,与同组同学剪出的三角形进行比较,这些三角形能够完全重合吗?(3) 如果改变B的大小, 或改变线段AB 、BC的长度,按同一条件与同组同学再做一次,所剪得的三角形还能够完全重合吗?(4) 通过上面的实验,你能得到什么结论?与同组同学交流,写出结论:判定公理 如果 ,那么 ,简记为: 说明:(1)这个判定方法可以简单的用“边角边”或“SAS”来表示。(2)用符号表示: DFDBCA 在ABC和DEF中, ABCDEF(SAS)三、实际应用1.判断正误:对的画“”,错的画“”. (1)面积相等的两个三角形全等. ( )(2)两边对应相等的两个三角形全等. ( ) (3)一边一角对应相等的两个三角形全等. ( ) (4)三边对应相等的两个三角形全等. ( ) (5)两边和它们的夹角对应相等的两个三角形全等. ( ) (6)两边和一角对应相等的两个三角形全等. ( )2. 如图,已知:ADBC,ADCB,AFCE. 求证:AFDCEB.证明:ADBC,A_(两直线平行, 相等)在_和_中,_(_).3.如图,已知:ADBC,ADCB,AECF.求证:DB.证明:ADBC,A (两直线平行, 相等).AECF,AF .在AFD和CEB中,AFDCEB( ). .4、如图:已知AB=AD,AC=AE,求证:1ABCA DE ;2D=B。5、如图,AECF,ADBC,ADCB,求证:ADF CBECBDAO6如图,OA=OC,OD=OB.求证:A=C.7如图,已知A=B, AD=BC,AE=BF,求证:ADF=BCE四.巩固练习1.如图所示,D是BC的中点,ADBC,那么下列结论中错误的是 ( )A.ABDACD B.B=CC.AD为ABC的高 D.ABC的三边相等2、如图所示,在ABC中,已知AB=AC,延长AB到D,使BD=AB,延长AC到E,使CE=AC,连结CD、BE,求证:CD=BE.3、如图,已知点A、B、C、D在同一条直线上,AB=CD,D=ECA,EC=FD,求证:AE=BF4、拓展应用如图,要在湖的两岸A、B间建一座观赏桥,由于条件限制,无法直接度量A、B两点间的距离.请你用学过的数学知识按以下要求设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025布草定制生产与酒店连锁集团采购合同
- 2025版城市配送公司司机招聘与管理合同文本
- 2025年度燃料油代理采购与新型燃烧装置合作开发合同
- 2025版水果新品开发与市场推广合作合同下载
- 2025年拆迁安置房买卖合同合同履行及变更管理合同范本
- 2025年特色园区厂房租赁居间服务协议范本
- 2025版食品行业食品安全认证服务合同范本
- 2025年汽车安全信息共享与应急处理服务合同
- 银行零售业务数字化营销转型中的金融科技人才培养报告
- 2025版企业生日蛋糕卡采购及服务协议模板下载
- 广告创意与用户体验-第3篇-洞察阐释
- 幼儿园一日常规安全培训
- 5G基带芯片算法验证平台:从设计到实现的关键技术与实践
- 税务会计与税收筹划课件
- 2025年高考生物辽宁卷真题解读及复习备考指导(黑龙江吉林内蒙古适用)
- 新媒体视听节目制作
- 数字化教学环境下小学语文板书设计优化策略
- JG/T 237-2008混凝土试模
- JG/T 232-2008卫浴型散热器
- 灭火员初级习题库
- T/CAQP 001-2017汽车零部件质量追溯体系规范
评论
0/150
提交评论