数学人教版八年级下册中点问题.doc_第1页
数学人教版八年级下册中点问题.doc_第2页
数学人教版八年级下册中点问题.doc_第3页
数学人教版八年级下册中点问题.doc_第4页
数学人教版八年级下册中点问题.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中点问题指导教师:张琳课 题中点问题课 型习题课教学分析 中点问题是初中数学中一个典型问题,主要应用于三角形、四边形、圆。本节课对于学生在本章涉及到的中点问题进行分类,并举例分析,对中点问题的基本思路进行探究,结合学生的认知能力,设计一系列由简到难的问题,逐步加深对中点问题的理解,让学生逐步学会分析解题思路及添加有关中位线辅助线的技巧,课堂上让学生自主探究,合作交流,进而活化学生的思维,提高解题能力。学情分析 学生目前接触到的中点问题主要结合了三角形与四边形运用,对于问题的解决方法较单一,缺乏综合分析问题和概括问题的能力。教学目标1. 知识与技能:熟练运用中点相关的知识点,会分析问题和结合图形,提高学生做辅助线的能力。2. 过程与方法:在探究过程中,发展合理的推理意识 ,主动探究的习惯和如何添加辅助线的思想。3. 情感态度和价值观:培养学生思维能力和归纳概括能力,提高解决问题的能力,团结协作能力。教学重点用中点解决问题教学难点中点问题辅助线的添加思路教 具教案、课件教 法启发式、合作探究式、归纳总结学 法自主探究,合作交流教学过程设计意图一、温故知新(2分钟)复习提问:我们学习了哪些与中点相关的结论?1. 三角形中位线定理2. 三角形斜边的中线等于斜边的一半二、牛刀小试(10分钟)1.ABC为直角三角形,ABC为直角,BD为斜边AC上的中线,BD=3cm,则AC= cm。2.如图,DE是ABC的中位线,若BC=8,则DE= 。3.在RtABC中,C=90,AC=5,BC=12,D为AB的中点,则DC= 。 4.三角形三边长分别为3cm,4cm,5cm,则连接三边中点所围成的三角形周长是 。 5.ABC中,D、E、F分别为AB、BC、CA的中点,AB=6,AC=4,则四边形ADEF的周长为 。3、 思维拓展(22分钟)1.在ABC中,D是BC的中点,AB=6,AC=4,求AD的取值范围?2.已知:在ABC中,D,E,F分别是AB,AC,BC的中点,证明:AF,DE互相平分3. 已知BD,CE是ABC的两条高,M,N分别是BC,DE的中点,MN与DE有怎样的位置关系?请证明四、思维提高(10分钟)1. 如图,在ABD和ACE中,ADB=AEC=90,ABD=ACE,O为BC的中点,探究DO与EO间的数量关系。2.已知在四边形ABCD中,AD=BC,点E,F分别是边CD,AB的中点,AD,BC的延长线分别交FE的延长线于点G,H,猜想AGF与BHF的关系,并说明理由。五、归纳总结(2分钟)遇到中点问题时:1. 三角形的“中线倍长法”解决一类问题2. 使直角三角形斜边上的中点变成中线3. 多个中点时构造中位线 教师提问,学生回答。使学生对本章的两个中点知识进行回顾。 学生回答,教师点拨,对中位线与直角三角形斜边中线两个知识点进行简单运用,活跃学生的思维。 学生能够运用中线倍长法或者中位线的知识解决问题,做到一题多解,培养发散思维 学生自主思考,教师指导,注重学生的解题思路,运用中位线解题,培养学生理解辅助线添加的方法 学生小组讨论,合作学习,思考如何利用已知条件添加辅助线,运用直角三角形斜边中线的知识解题,让学生体会如何运用中点解决问题。 这道题涉及了本章两个中点知识的综合运用,在结合前面的习题,掌握如何添加辅助线的基础上,综合提高学生的思维能力 在学生掌握了如何利用中点解决问题的基础上,让学生先自主思考,再小组交流,学生代表小组发言,学以致用。 学生自主归纳总结在解中点问题中如何利用已知条件添加辅助线,注重学生的归纳能力板书设计中点问题(方法归纳)1. 中位线定理2. 直角三角形斜边上的中线等于斜边的一半。3. 中线倍长法布置作业已知:在四边形ABCD中,对角线AC、BD交于点O,E,F分别 是AB,CD的中点,且AC=BD求证:OM=ON教学反思 在教学设计上较为合理,安排比较紧凑:先复习本章节涉及到的两个中点相关的知识点,对知识进行简单的运用,再以小组探究的形式,分别对中点问题进行分类探究,让学生自己总结归纳,如何添加辅助线。 在学生动手实践、自主学习和合作探究的学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论