平行四边形典型问题分类解析.doc_第1页
平行四边形典型问题分类解析.doc_第2页
平行四边形典型问题分类解析.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

平行四边形典型问题分类解析为了开阔同学们的视野,特就一些平行四边形典型问题分类选解几例,希望同学们从中得到启示1证明线段垂直例1 已知:如图,在平行四边形ABCD中,AB = 2BC,M为AB的中点,求证:CMDM分析:根据平行四边形的性质,不仅对角相等,而且相邻角的角也互补,这就为证明垂直提供了充分的条件又有已知中AB = 2BC和M为AB的中点,可以得到相等的角其中有内错角相等,也有等边对等角性质的应用,使CDMDCM =,可使问题得到解决证明:在平行四边形ABCD中,ABCD,AD = BC,AMDBC例1图AMD =CDM,BMC =DCM,AB = 2BC,M是AB的中点,AD = AM = BM = BCADM =AMD,BMC =BC MADM =CDM,BC M =DCM, CDM =ADC,DCM =BCD又ADCBCD =,CDMDCM =,即DMC =CMDM评析:本题通过利用平行四边形和等腰三角形的性质,证明了CM、DM所在的三角形两锐角互余,由三角形内角和定理得出DMC =,从而得到结论这是证明两线段互相垂直的常用方法ACOFBDE例2图2证明线段平行例2 如图,AB、CD 交于点O,ACDB,AO = BO,E、F分别为OC、OD的中点,连结AF、BE求证:AFBE分析:从已知条件可证AOCBOD,得到OC = OD,又有E、F为OC、OD中点,则OE = OF,判定四边形AFBE为平行四边形,即有AFBE证明:连结BF、AE,ACDB,C =D在AOC和BOD中,有AOCBOD,OC = OD又E、F为OC、OD的中点,OE = OF,四边形AFBE是平行四边形,AFBE评析:学习了平行四边形以后,又多了一种证明平行线的方法3证明线段相等例3 如图,ABC中,AB = AC,P是BC上的一点,PEAC,PFAB,分别交AB、AC于E、F,请猜出线段PE、PF、AB之间存在什么关系,并证明你的猜想EBPCFA例3图分析:从已知条件中不难证明PF = AE,PE = BE,从而PE、PF、AB之间满则关系式PEPF = AB即猜想结论:PEPF = AB证明:PEAC,BPE =CAB = AC,B =C,BPE =B,PE = BEPEAC,PFAB,四边形AEPF是平行四边形,PF = AEBEAE = AB,PEPF = AB评析:在解决此类探索性问题时,一般通过对已知条件的分析、比较、概括探索出结论,这就是对猜想问题的常用解题思路4求线段的长度例4 如图,在四边形ABCD中,AB = 6,BC = 8,A =,B =,C =,求AD的长DCBAE例4图分析:要求AD的长度,需要借助辅助线把问题转化,由A 和B的关系可以判定ADBC,这样不妨过点C作AB的平行线,构成一个平行四边形,然后利用角之间的关系与平行四边形的性质,使问题得以解决解:点C作CEAB交AD于E,AB =,ADBC,四边形ABCE是平行四边形AE = BC = 8,CE = AB = 6,BCE =A =又BCD =,DCE =而D =,D =DCE =,DE = CE,AD = 86 = 14评析:在判定ADBC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论