


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
全国中小学“教学中的互联网搜索”优秀教学案例评选教案设计2.1充分条件与必要条件(北师大版)一 教案背景1.面向学生: 中学 小学 学科:数学2.课时:1二 教材分析充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为数学推理的学习打下基础。新教学大纲把教学目标定位在“掌握充要条件的意义”。从学生学习的角度看,教学时间的前移,可能会因为学生逻辑思维能力还不够充分,而给教师的教学带来一定的困难。因此,新教材在第一章的小结与复习中,把学生的学习要求规定为“初步掌握充要条件”,是比较切合教学实际的。从教材编写角度来看,新旧教材最大的差异在于对“充分条件”和“必要条件”定义的处理上。新教材的定义显得更简洁精炼,而新教材的例题、练习题和习题量均大幅增加,大约是旧教材的两倍。显然,新教材的编写者在数学概念的处理上贯彻了“淡化形式,注重实质”这一新的教学观。当然,一次性给出定义也增加了学生理解上的困难,也是教学中必须突破的难点。三 教学目标(一) 知识目标:1、正确理解充分条件、必要条件、充要条件三个概念。2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系。3、在理解定义的基础上,可以自觉地对定义进行转化,转化成推理关系及集合的包含关系。(二)能力目标:1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。3、培养学生的建构能力:“善建构”,通过反复的观察分析和类比,对归纳出的结论,建构于自己的知识体系中。(三)情感目标:1、通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受。2、通过对命题的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。四 教学重点:充分条件、必要条件的概念(解决办法:对这三个概念分别先从实际问题引起概念,再详细讲述概念,最后再应用概念进行论证)教学难点:判断命题的充分条件、必要条件。(关键:分清命题的条件和结论,看是条件能推出结论还是结论能推出条件)五 教学过程学生探究过程:1练习与思考写出下列两个命题的条件和结论,并判断是真命题还是假命题?(1)若x a2 + b2,则x 2ab, (2)若ab 0,则a 0.学生容易得出结论;命题(1)为真命题,命题()为假命题置疑:对于命题“若p,则q”,有时是真命题,有时是假命题如何判断其真假的?答:看p能不能推出q,如果p能推出q,则原命题是真命题,否则就是假命题给出定义命题“若p,则q” 为真命题,是指由p经过推理能推出q,也就是说,如果p成立,那么q一定成立换句话说,只要有条件p就能充分地保证结论q的成立,这时我们称条件p是q成立的充分条件一般地,“若p,则q”为真命题,是指由p通过推理可以得出q这时,我们就说,由p可推出q,记作:pq定义:如果命题“若p,则q”为真命题,即p q,那么我们就说p是q的充分条件;q是p必要条件上面的命题(1)为真命题,即 x a2 + b2x 2ab,所以“x a2 + b2”是“x 2ab”的充分条件,“x 2ab”是“x a2 + b2”的必要条件3例题分析:例:下列“若p,则q”形式的命题中,那些命题中的p是q的充分条件?(1)若x 1,则x2 4x 3 0;(2)若f(x) x,则f(x)为增函数;(3)若x为无理数,则x2为无理数分析:要判断p是否是q的充分条件,就要看p能否推出q解略例:下列“若p,则q”形式的命题中,那些命题中的q是p的必要条件?(1) 若x y,则x2 y2;(2) 若两个三角形全等,则这两个三角形的面积相等; (3)若a b,则acbc分析:要判断q是否是p的必要条件,就要看p能否推出q解略、巩固巩固:课本练习5课堂小结充分、必要的定义,符号表示.6.作业 注:(1)条件是相互的; (2)p是q的什么条件,有四种回答方式: p是q的充分而不必要条件; p是q的必要而不充分条件; p是q的充要条件; p是q的既不充分也不必要条件六 板书设计2.1 充分条件与必要条件一、定义 二、典型例题符号表示 三、 课堂练习四、小结七 教学后记附 教师
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届云南省红河州泸西县第一中学化学高三第一学期期末质量跟踪监视模拟试题含解析
- (2025年标准)光伏工程协议书
- (2025年标准)关于建设房屋协议书
- (2025年标准)关爱救助协议书
- 品牌策划与市场推广实战指南
- 物流快递行业智能分拣与配送管理技术方案
- 2026届河南省开封市祥符区化学高三第一学期期末学业质量监测试题含解析
- 2026届重庆市七校联盟化学高三第一学期期末学业质量监测模拟试题含解析
- 幼儿园餐饮废弃物处理制度范文
- 农村危房改造工程设计指导书
- 2024中国高血压防治指南要点解读
- 无废工厂宣传课件
- 酒店预算培训课件
- 关于财富的课件
- 2025-2030中国汽车工程服务外包(ESO)行业现状调查与前景趋势研究报告
- 华为荣誉激励管理办法
- 2025至2030全球及中国实验室PH电极行业发展趋势分析与未来投资战略咨询研究报告
- 相控阵超声检测技术及应用
- 第四单元整本书阅读《红岩》课件 2025-2026学年统编版语文八年级上册
- 特色小吃街商业运营与管理合作协议
- 金提炼过程中的贵金属综合回收利用考核试卷
评论
0/150
提交评论