浙教版八年级下册第1章《二次根式》教案.doc_第1页
浙教版八年级下册第1章《二次根式》教案.doc_第2页
浙教版八年级下册第1章《二次根式》教案.doc_第3页
浙教版八年级下册第1章《二次根式》教案.doc_第4页
浙教版八年级下册第1章《二次根式》教案.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1二次根式教学目标:1经历 二次根式概念的发生过程;2了解二次根式的概念;3理解二次根式何时有意义,何时无意义,会在简单情况下求根号内所含字母的取值范围;4会求二次根式的值。教学重点与难点:重点:是二次根式的概念难点:确定二次根式中字母的取值范围设计教学程序:一、 创设情境,引入课题数学是思维的体操,问题是数学的心脏。生活中多提炼些数学问题,我们就会学好数学这门课。小明是个数学爱好者,喜欢编数学题。今天他来到了一个奇异的宫殿,那里的大门口镶嵌着几何图案。他选择了其中三个,出了这样的三道题目。请帮助完成。根据图11所示的直角三角形、正方形和等边三角形的条件,完成以下填空:2cmacm图11直角三角形的斜边长是_;正方形的边长是_;等边三角形的边长是_。让学生在实际情境中写出表示算术平方根的式子。问:看到这些代数式,你想到了你已经学过的哪个知识点?(简单复习平方根和算术平方根)问:你认为所得的各代数式的共同特点是什么?(学生通过观察,从中感知二次根式的特征。鼓励学生用自己的语言总结出共同特征。从而引出课题,教师鼓励学生大胆表述意见,然后作适当点评,板书本课课题)。二、 新课讲授,探究新知1、 二次根式的概念1)引导学生概括二次根式的定义:像这样表示的算术平方根,且根号内含字母的代数式叫做二次根式。为了方便,我们把一个数的算术平方根(如)也叫做二次根式。2)概念深化:1. 判断下列代数式是不是二次根式?2.提问:是不是二次根式?呢? 议一议:二次根式表示什么意义?此算术平方根的被开方式是什么?被开方式必须满足什么条件的二次根式才有意义?其中字母a需满足什么条件?为什么?经学生讨论后,让学生回答,并让其他的学生点评。教师总结:强调二次根式根号内字母的取值范围必须满足被开方式大于或等于零。2、 讲解例题例1 求下列二次根式中字母a的取值范围:(1), (2); (3).按教师提问,学生回答,教师板书解题过程交替进行的方式教学,问题设计: 被开方式需满足什么? 由此可得怎样的不等式? 第(1)(2)两题可以转化为解怎样的不等式?第(3)题不解不等式就能确定a的取值范围吗?解:(1) 由a+1 0 , 得 a -1字母a的取值范围是大于或等于-1的实数。(说明:这个问题实质上是在x是什么数时,a+1是非负数,式子 有意义,以下类同)(2)0,得1-2a0,即a字母a的取值范围是小于的实数。(3)因为无论a取何值,都有,所以a取值范围是全体实数。交流归纳,总结如下:由于二次根式的被开方数只能取非负值,因此二次根式要有意义就必须被开方数大于等于0。2、从形式上看,二次根式必须具备以下两个条件:( 1 ) 必须有二次根号;( 2 ) 被开方数不能小于0 。(学生与教师一同探索确定二次根式中字母的取值范围的求解过程,通过交流体会到求解二次根式中字母的取值范围过程的策略。本题的设置从二次根式的概念出发,把问题转化为求不等式,思路清晰自然,利于分散难点)。巩固练习:求下列二次根式中字母的取值范围:(1); (2); (3).例2 当x=4时,求二次根式的值.教法:(1)引导学生回顾代数式的值的概念和如何求代数式的值.(2)指出二次根式也是一种代数式,求二次根式的值和求其他代数式的值方法相同.(3)由学生独立完成解题过程,指定一名中等水平的学生板演.(4)教师点评板演结果.解:将x=-4代入二次根式,得=巩固练习:1、当x=-2时,求二次根式 的值2、当x分别取下列值时,求二次根式 的值。(1)x=0,(2)x=1,(3)x=-1三、回馈生活,实际应用1、一艘轮船先向东北方向航行2小时,再向西北方向航行t小时。船的航速是每时25千米。1)用关于t的代数式表示船离开出发地的距离。2)求当t=3时,船离开出发地多少千米。 (结果用根号表示) 四、拓展提高,能力测试1、用长为3cm,宽为(a3)cm邮票30枚摆成一个正方形,这个正方形的边长是多少?2、已知a.b为实数,且满足 , 求a 的值3、若二次根式的 值为3,求x的值。五、归纳小结,充实结构由学生总结,教师适当提问补充。谈一谈:本节课你有什么收获或困惑?(让学生通过自我评价的方法来检查自己的学习任务有没有完成,便于调节自己的学习进度,培养学生养成良好的学习习惯,发挥自我评价的作用,增强学生学数学的信念)。 引导学生做出本节课学习内容小结:1式子 叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式2式子中,被开方数(式)必须大于等于零3.给定一个特定的值,会求相应二次根式的值六、布置作业:作业本1二次根式前置学习单 姓名 一、 复习回顾1、36的平方根是 , 3的平方根是_ 2、16的算术平方根是 ,5的算术平方根是 .3、表示 ,表示 。 4、有意义吗?为什么?呢? 5、一个非负数a的算术平方根应怎样表示?二、合作学习根据下图所示的直角三角形、正方形和等腰直角三角形的条件,完成以下填空:cmcm直角三角形的斜边长是: 。正方形的边长是: 。等腰直角三角形的的腰长是: 。你认为所得的各代数式的共同特点是什么?三、 随堂练习1、判断下列各式中哪

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论