




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
普通高中课程标准实验教科书数学 人教版 高三新数学第一轮复习教案(讲座27)正、余弦定理及应用一课标要求:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。二命题走向对本讲内容的考察主要涉及三角形的边角转化、三角形形状的判断、三角形内三角函数的求值以及三角恒等式的证明问题,立体几何体的空间角以及解析几何中的有关角等问题。今后高考的命题会以正弦定理、余弦定理为知识框架,以三角形为主要依托,结合实际应用问题考察正弦定理、余弦定理及应用。题型一般为选择题、填空题,也可能是中、难度的解答题。三要点精讲1直角三角形中各元素间的关系:如图,在ABC中,C90,ABc,ACb,BCa。(1)三边之间的关系:a2b2c2。(勾股定理)(2)锐角之间的关系:AB90;(3)边角之间的关系:(锐角三角函数定义)sinAcosB,cosAsinB,tanA。2斜三角形中各元素间的关系:如图6-29,在ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。(1)三角形内角和:ABC。(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。(R为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。a2b2c22bccosA;b2c2a22cacosB;c2a2b22abcosC。3三角形的面积公式:(1)ahabhbchc(ha、hb、hc分别表示a、b、c上的高);(2)absinCbcsinAacsinB;(3);(4)2R2sinAsinBsinC。(R为外接圆半径)(5);(6);(7)rs。4解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形。解斜三角形的主要依据是:设ABC的三边为a、b、c,对应的三个角为A、B、C。(1)角与角关系:A+B+C = ;(2)边与边关系:a + b c,b + c a,c + a b,ab c,bc b;(3)边与角关系:正弦定理 (R为外接圆半径);余弦定理 c2 = a2+b22bccosC,b2 = a2+c22accosB,a2 = b2+c22bccosA;它们的变形形式有:a = 2R sinA,。5三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。(1)角的变换因为在ABC中,A+B+C=,所以sin(A+B)=sinC;cos(A+B)=cosC;tan(A+B)=tanC。;(2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。r为三角形内切圆半径,p为周长之半。(3)在ABC中,熟记并会证明:A,B,C成等差数列的充分必要条件是B=60;ABC是正三角形的充分必要条件是A,B,C成等差数列且a,b,c成等比数列。四典例解析题型1:正、余弦定理例1(1)在中,已知,cm,解三角形;(2)在中,已知cm,cm,解三角形(角度精确到,边长精确到1cm)。解析:(1)根据三角形内角和定理,;根据正弦定理,;根据正弦定理,(2)根据正弦定理,因为,所以,或当时, ,当时, ,点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器。例2(1)在ABC中,已知,求b及A;(2)在ABC中,已知,解三角形解析:(1)=cos=求可以利用余弦定理,也可以利用正弦定理:解法一:cos解法二:sin又,即(2)由余弦定理的推论得:cos;cos;点评:应用余弦定理时解法二应注意确定A的取值范围。题型2:三角形面积例3在中,求的值和的面积。解法一:先解三角方程,求出角A的值。 又, , 。 解法二:由计算它的对偶关系式的值。 , +得。 得。从而。以下解法略去。点评:本小题主要考查三角恒等变形、三角形面积公式等基本知识,着重数学考查运算能力,是一道三角的基础试题。两种解法比较起来,你认为哪一种解法比较简单呢?例4(06年湖南)已知ABC的三个内角A、BC成等差数列,其外接圆半径为1,且有。(1)求A、BC的大小;(2)求ABC的的面积。解析:A+B+C=180且2B=A+C,B=60,A+C=120,C=120A。,=, 又0A180,A=60或A=105,当A=60时,B=60,C=60,当A=105时,B=60,C=15,点评:要善于借助三角形内的部分变形条件,同时兼顾三角形的面积公式求得结果。题型3:与三角形边角相关的问题例5(1)(2005江苏5)ABC中,则ABC的周长为( )A BC D(2)(06年全国2文,17)在,求(1)(2)若点解析:(1)答案:D解析:在中,由正弦定理得:化简得AC=,化简得AB=,所以三角形的周长为:3+AC+AB=3+=3+。故选D。(2)解:(1)由,由正弦定理知,(2),。由余弦定理知:点评:本题考查了在三角形正弦定理的的运用,以及三角公式恒等变形、化简等知识的运用。例6在锐角中,角所对的边分别为,已知,(1)求的值;(2)若,求的值。解析:(1)因为锐角ABC中,ABCp,所以cosA,则(2),则bc3。将a2,cosA,c代入余弦定理:中,得解得b。点评:知道三角形边外的元素如中线长、面积、周长等时,灵活逆用公式求得结果即可。题型4:三角形中求值问题例7的三个内角为,求当A为何值时,取得最大值,并求出这个最大值。解析:由A+B+C=,得=,所以有cos =sin。cosA+2cos =cosA+2sin =12sin2 + 2sin=2(sin )2+ ;当sin = ,即A=时, cosA+2cos取得最大值为。点评:运用三角恒等式简化三角因式最终转化为关于一个角的三角函数的形式,通过三角函数的性质求得结果。例8(06四川文,18)已知A、B、C是三内角,向量,且,()求角A;()若解析:() ,即,;,。()由题知,整理得, ;或,而使,舍去;。点评:本小题主要考察三角函数概念、同角三角函数的关系、两角和与差的三角函数的公式以及倍角公式,考察应用、分析和计算能力。题型5:三角形中的三角恒等变换问题例9在ABC中,a、b、c分别是A、B、C的对边长,已知a、b、c成等比数列,且a2c2=acbc,求A的大小及的值。分析:因给出的是a、b、c之间的等量关系,要求A,需找A与三边的关系,故可用余弦定理。由b2=ac可变形为=a,再用正弦定理可求的值。解法一:a、b、c成等比数列,b2=ac。又a2c2=acbc,b2+c2a2=bc。在ABC中,由余弦定理得:cosA=,A=60。在ABC中,由正弦定理得sinB=,b2=ac,A=60,=sin60=。解法二:在ABC中,由面积公式得bcsinA=acsinB。b2=ac,A=60,bcsinA=b2sinB。=sinA=。评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理。例10(2002京皖春,17)在ABC中,已知A、B、C成等差数列,求的值。解析:因为A、B、C成等差数列,又ABC180,所以AC120,从而60,故tan.由两角和的正切公式,得。所以。点评:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解,同时结合三角变换公式的逆用。题型6:正、余弦定理判断三角形形状例11(2002上海春,14)在ABC中,若2cosBsinAsinC,则ABC的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形答案:C解析:2sinAcosBsin(AB)sin(AB)又2sinAcosBsinC,sin(AB)0,AB点评:本题考查了三角形的基本性质,要求通过观察、分析、判断明确解题思路和变形方向,通畅解题途径。例12(06安徽理,11)如果的三个内角的余弦值分别等于的三个内角的正弦值,则( )A和都是锐角三角形B和都是钝角三角形C是钝角三角形,是锐角三角形D是锐角三角形,是钝角三角形解析:的三个内角的余弦值均大于0,则是锐角三角形,若是锐角三角形,由,得,那么,所以是钝角三角形。故选D。点评:解决此类问题时要结合三角形内角和的取值问题,同时注意实施关于三角形内角的一些变形公式。北2010ABC题型7:正余弦定理的实际应用例13(06上海理,18)如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1)?解析:连接BC,由余弦定理得BC2=202+10222010COS120=700.于是,BC=10。 ,sinACB=, ACB90,ACB=41。乙船应朝北偏东71方向沿直线前往B处救援。点评:解三角形等内容提到高中来学习,又近年加强数形结合思想的考查和对三角变换要求的降低,对三角的综合考查将向三角形中问题伸展,但也不可太难,只要掌握基本知识、概念,深刻理解其中基本的数量关系即可过关。例14(06江西理,19)如图,已知ABC是边长为1的正三角形,M、N分别是边AB、AC上的点,线段MN经过ABC的中心G,设MGAa()(1)试将AGM、AGN的面积(分别记为S1与S2);(2)表示为a的函数,求y的最大值与最小值。解析:(1)因为G是边长为1的正三角形ABC的中心,所以 AG,MAG,由正弦定理得,则S1GMGAsina。同理可求得S2。(2)y72(3cot2a)因为,所以当a或a时,y取得最大值ymax240,当a时,y取得最小值ymin216。点评:三角函数有着广泛的应用,本题就是一个典型的范例。通过引入角度,将图形的语言转化为三角的符号语言,再通过局部的换元,又将问题转化为我们熟知的函数,这些解题思维的拐点,你能否很快的想到呢?五思维总结1解斜三角形的常规思维方法是:(1)已知两角和一边(如A、B、C),由A+B+C = 求C,由正弦定理求a、b;(2)已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = ,求另一角;(3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C = 求C,再由正弦定理或余弦定理求c边,要注意解可能有多种情况;(4)已知三边a、b、c,应余弦定理求A、B,再由A+B+C = ,求角C。2三角形内切圆的半径:,特别地,;3三角学中的射影定理:在ABC 中,4两内角与其正弦值:在ABC 中,5解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”。普通高中课程标准实验教科书数学 人教版 高三新数学第一轮复习教案(讲座26)平面向量的数量积及应用一课标要求:1平面向量的数量积通过物理中功等实例,理解平面向量数量积的含义及其物理意义;体会平面向量的数量积与向量投影的关系;掌握数量积的坐标表达式,会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。2向量的应用经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。二命题走向本讲以选择题、填空题考察本章的基本概念和性质,重点考察平面向量的数量积的概念及应用。重点体会向量为代数几何的结合体,此类题难度不大,分值59分。平面向量的综合问题是“新热点”题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等问题,以解答题为主。预测07年高考:(1)一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度问题;属于中档题目。(2)一道解答题,可能以三角、数列、解析几何为载体,考察向量的运算和性质;三要点精讲1向量的数量积(1)两个非零向量的夹角已知非零向量a与a,作,则AA()叫与的夹角;说明:(1)当时,与同向;(2)当时,与反向;(3)当时,与垂直,记;(4)注意在两向量的夹角定义,两向量必须是同起点的,范围0q180。C(2)数量积的概念已知两个非零向量与,它们的夹角为,则=cos叫做与的数量积(或内积)。规定;向量的投影:cos=R,称为向量在方向上的投影。投影的绝对值称为射影;(3)数量积的几何意义: 等于的长度与在方向上的投影的乘积。(4)向量数量积的性质向量的模与平方的关系:。乘法公式成立;平面向量数量积的运算律交换律成立:;对实数的结合律成立:;分配律成立:。向量的夹角:cos=。当且仅当两个非零向量与同方向时,=00,当且仅当与反方向时=1800,同时与其它任何非零向量之间不谈夹角这一问题。(5)两个向量的数量积的坐标运算已知两个向量,则=。(6)垂直:如果与的夹角为900则称与垂直,记作。两个非零向量垂直的充要条件:O,平面向量数量积的性质。(7)平面内两点间的距离公式设,则或。如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式)。2向量的应用(1)向量在几何中的应用;(2)向量在物理中的应用。四典例解析题型1:数量积的概念例1判断下列各命题正确与否:(1);(2);(3)若,则;(4)若,则当且仅当时成立;(5)对任意向量都成立;(6)对任意向量,有。解析:(1)错;(2)对;(3)错;(4)错;(5)错;(6)对。点评:通过该题我们清楚了向量的数乘与数量积之间的区别于联系,重点清楚为零向量,而为零。例2(1)(2002上海春,13)若、为任意向量,mR,则下列等式不一定成立的是( )A BCm()=m+m D(2)(2000江西、山西、天津理,4)设、是任意的非零平面向量,且相互不共线,则()()= | ()()不与垂直(3+2)(32)=9|24|2中,是真命题的有( )A. B. C. D.解析:(1)答案:D;因为,而;而方向与方向不一定同向。(2)答案:D平面向量的数量积不满足结合律。故假;由向量的减法运算可知|、|、|恰为一个三角形的三条边长,由“两边之差小于第三边”,故真;因为()()=()()=0,所以垂直.故假;(3+2)(32)=94=9|24|2成立。故真。点评:本题考查平面向量的数量积及运算律,向量的数量积运算不满足结合律。题型2:向量的夹角例3(1)(06全国1文,1)已知向量、满足、,且,则与的夹角为( )A B C D(2)(06北京文,12)已知向量=(cos,sin),=(cos,sin),且,那么与的夹角的大小是 。(3)已知两单位向量与的夹角为,若,试求与的夹角。(4)(2005北京3)| |=1,| |=2,= + ,且,则向量与的夹角为( )A30B60C120D150解析:(1)C;(2);(3)由题意,且与的夹角为,所以,同理可得。而,设为与的夹角,则。(4)C;设所求两向量的夹角为即:所以点评:解决向量的夹角问题时要借助于公式,要掌握向量坐标形式的运算。向量的模的求法和向量间的乘法计算可见一斑。对于这个公式的变形应用应该做到熟练,另外向量垂直(平行)的充要条件必需掌握。例4(1)(06全国1理,9)设平面向量、的和。如果向量、,满足,且顺时针旋转后与同向,其中,则( )A+= B-+=C+-= D+=(2)(06湖南理,5)已知 且关于的方程有实根, 则与的夹角的取值范围是( )A B C D解析:(1)D;(2)B;点评:对于平面向量的数量积要学会技巧性应用,解决好实际问题。题型3:向量的模例5(1)(06福建文,9)已知向量与的夹角为,则等于( ) A5B4C3D1(2)(06浙江文,5)设向量满足,则( )A1 B2 C4 D5解析:(1)B;(2)D;点评:掌握向量数量积的逆运算,以及。例6已知(3,4),(4,3),求x,y的值使(x+y),且x+y=1。解析:由(3,4),(4,3),有x+y=(3x+4y,4x+3y);又(x+y)(x+y)3(3x+4y)+4(4x+3y)=0;即25x+24y ;又x+y=1x+y;(x+4y)(x+3y);整理得25x48xy+25y即x(25x+24y)+24xy+25y ;由有24xy+25y ;将变形代入可得:y=;再代回得:。点评:这里两个条件互相制约,注意体现方程组思想。题型4:向量垂直、平行的判定例7(2005广东12)已知向量,且,则 。解析:,。例8已知,按下列条件求实数的值。(1);(2);。解析:(1);(2);。点评:此例展示了向量在坐标形式下的平行、垂直、模的基本运算。题型5:平面向量在代数中的应用例9已知。 分析:,可以看作向量的模的平方,而则是、的数量积,从而运用数量积的性质证出该不等式。 证明:设 则。点评:在向量这部分内容的学习过程中,我们接触了不少含不等式结构的式子,如等。例10已知,其中。 (1)求证:与互相垂直; (2)若与()的长度相等,求。 解析:(1)因为 所以与互相垂直。 (2), , 所以, , 因为, 所以, 有, 因为,故, 又因为,所以。点评:平面向量与三角函数在“角”之间存在着密切的联系。如果在平面向量与三角函数的交汇处设计考题,其形式多样,解法灵活,极富思维性和挑战性。若根据所给的三角式的结构及向量间的相互关系进行处理。可使解题过程得到简化,从而提高解题的速度。题型6:平面向量在几何图形中的应用例11(2002年高考题)已知两点,且点P(x,y)使得,成公差小于零的等差数列。(1)求证;(2)若点P的坐标为,记与的夹角为,求。解析:(1)略解:,由直接法得(2)当P不在x轴上时,而所以,当P在x轴上时,上式仍成立。图1点评:由正弦面积公式得到了三角形面积与数量积之间的关系,由面积相等法建立等量关系。例12用向量法证明:直径所对的圆周角是直角。已知:如图,AB是O的直径,点P是O上任一点(不与A、B重合),求证:APB90。证明:联结OP,设向量,则且,即APB90。点评:平面向量是一个解决数学问题的很好工具,它具有良好的运算和清晰的几何意义。在数学的各个分支和相关学科中有着广泛的应用。题型7:平面向量在物理中的应用例13如图所示,正六边形PABCDE的边长为b,有五个力、作用于同一点P,求五个力的合力。解析:所求五个力的合力为,如图3所示,以PA、PE为边作平行四边形PAOE,则,由正六边形的性质可知,且O点在PC上,以PB、PD为边作平行四边形PBFD,则,由正六边形的性质可知,且F点在PC的延长线上。由正六边形的性质还可求得故由向量的加法可知所求五个力的合力的大小为,方向与的方向相同。五思维总结1两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定;(2)两个向量的数量积称为内积,写成;今后要学到两个向量的外积,而是两个向量的数量的积,书写时要严格区分.符号“ ”在向量运算中不是乘号,既不能省略,也不能用“”代替;(3)在实数中,若a0,且ab=0,则b=0;但是在数量积中,若0,且=0,不能推出=。因为其中cosq有可能为0;(4)已知实数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区水域巡查管理办法
- 疫情期间聚众管理办法
- 纪检特别经费管理办法
- 税务风险等级管理办法
- 税收监管项目管理办法
- 企业安全用电专题培训课件
- 统编版 语文 四年级 下册《 黄继光 》教学教案
- 2025城管执法综合考试试卷
- 2025年重庆高级导游等级考试(导游综合知识)考前冲刺试题及答案
- 出纳岗位安全生产培训课件
- 整理版第三届宁波国际海报双年展2004获奖作品选
- 关键过程(工序)和特殊过程(工序)管理办法
- 信息检索技术讲义
- 火力发电厂运煤设计规程
- 武术校本课程武术基本功
- 机械制造及自动化专业讲座
- 第十章DNA、RNA的生物合成ppt课件
- 3250变压器综合测试仪(共85页)
- HXN5型机车常见故障处理指导书
- 医用耗材分类目录 (低值 ╱ 高值)
- 加油站经理竞聘试卷(A)
评论
0/150
提交评论