实用信号源的设计和制作(严俊宇).doc_第1页
实用信号源的设计和制作(严俊宇).doc_第2页
实用信号源的设计和制作(严俊宇).doc_第3页
实用信号源的设计和制作(严俊宇).doc_第4页
实用信号源的设计和制作(严俊宇).doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电子系统设计报告 设计课题:实用信号源的设计和制作 学院:机械与电子工程学院 专业:自动化 姓名:严俊宇 学号:102062026 实用信号源的设计和制作一、设计任务及主要技术指标设计任务:在给定15V电源电压条件下,设计并制作一个正弦波和脉冲波信号源。设计要求:1基本要求(1)正弦波信号源 信号频率:20Hz20kHz步进调整,步长为5Hz, 频率稳定度:优于10-4 非线性失真系数3%(2)脉冲波信号源 信号频率:20Hz20kHz步进调整,步长为5Hz 上升时间和下降时间:1s 平顶斜降:5% 脉冲占空比:2%98%,步进可调,步长为2%(3)上述两个信号源公共要求 频率可预置。 在负载为600时,输出幅度为3V。 完成5位频率的数字显示。2发挥部分 (1)正弦波和脉冲波频率步长改为1Hz。 (2)正弦波和脉冲波幅度可步进调整,调整范围为100mV3V,步长为100mV。 (3)正弦波和脉冲波频率可自动步进,步长为1Hz。 (4)降低正弦波非线性失真系数。二、本设计总体方案由于本设计要求不能采用专用信号发生芯片和可编程器件,并且要求达到的频率范围为20Hz20KHz,为低频信号发生器,因此拟采用方法一,即由分立器件构建频率产生单元,产生振荡后再实现正弦波和脉冲波,这种方法有以下两种信号输出方案。方案一:如图2.1所示。频率产生单元三角波正弦波方波 图2.1 信号输出方案一方案二:如图2.2所示。频率产生单元正弦波方波 图2.2 信号输出方案二考虑电路结构和实现方便,拟采用方案二。振荡电路稳幅电路正弦波调幅电路电压比较电路脉冲调幅电路正弦波脉冲波系统总体框图如图2.3所示。所设计的信号发生器由振荡电路、稳幅电路、正弦波调幅电路、电压比较电路、脉冲波调幅电路组成。频率产生单元由振荡电路和电压放大电路构成,能够产生频率可调的正弦波信号,正弦波信号的幅度调整后经电压比较器和脉冲调幅电路输出要求的脉冲波。 图2.3系统总体框图3、 正弦波信号生成方案 信号发生器的工作频率范围、频率稳定度、频率设置精度、相位噪声、信号频谱纯度是信号发生器性能的重要指标,都与频率产生单元有关,在本设计中频率产生单元首先生成正弦波信号,正弦波信号的频率大小直接影响后面脉冲波信号的步进,因此正弦波信号的产生方法十分重要。1.1振荡信号的生成方法振荡信号可以由三种形式的振荡器产生。1. LC 振荡器这种振荡器,由于LC 体积大、频率变化范围小、品质因数Q 值较小,故一般不太适合用于低频信号振荡器,而在一般高频信号振荡器中使用较多。2. 差频振荡器由一稳定的基准频率振荡器与可调频率振荡器产生差频信号,此差频信号经过低频滤波、放大后作为信号源输出信号。这种振荡器频率覆盖面宽,缺点是受高频基准振荡器频率稳定度的影响很大,所以输出频率稳定性较差,在低频端尤为显著,使用时需要经常校正。3. RC振荡器RC 振荡器用电阻代替了电感器,使结构简单、紧凑,不仅降低了成本,而且还具有较高的频率稳定性,调节使用较方便,因而在低频信号发生器中被广泛地应用。典型的RC 振荡器叫做文氏电桥振荡器。文氏电桥振荡器的优点是在同一频段内比LC 振荡器的频率范围宽,其频率变化比值( 以最高频率与最低频率之比表示)可达101,而LC 振荡器只有31左右。振荡波形是正弦波,失真小。频率稳定性高,在所有工作频率范围内,振幅几乎等于常数。低频信号发生器中多采用这种电路。因此设计中采用RC 振荡器产生正弦振荡信号。1.2 RC振荡原理与振荡条件正弦波产生电路一般应放大电路、反馈网络、选频网络、稳幅电路几个基本组成部分。判断一个电路是否为正弦波振荡器,就看其组成是否含有上述四个部分。 1. RC桥式振荡电路的构成RC桥式振荡电路如图2.4所示。RC 串并联网络接在运算放大器的输出端和同相输入端构成了带有选频作用的正反馈网络,另外Rf、R1接在运算放大器的输出端和反相输入端之间,与集成运放一起构成负反馈放大电路。由图2.5可见,正反馈电路与负反馈电路构成一文氏电桥电路,运算放大器的输入端和输出端分别跨接在电桥的对角线上,所以把这种振荡电路称为RC桥式振荡电路。可见,当=0=1/RC时,达到最大值且等于 1/3, 而相移=0,输出电压与输入电压同相,所以RC串并联网络具有选频作用,此时输出电压频率为 (2-1) 图2.4 RC桥式振荡电路2. 正弦振荡条件 判断正弦振荡的一般方法是:(1)是否满足相位条件,即电路是否为正反馈,只有满足相位条件才有可能振荡;(2)放大电路的结构是否合理,有无放大能力,静态工作点是否合适。 (3)分析是否满足幅度条件, 检验 ,若 ,则不可能振荡; ,能振荡,但输出波形明显失真; ,产生振荡。振荡稳定后 ,再加上稳幅措施,振荡稳定,而且输出波形失真小。 对于图2.4,输入信号由同相端输入(即振荡信号由此输入),根据虚短、虚断可求得负反馈闭环电压放大倍数为: (2-2)振幅条件: (2-3) 相位起振: (2-4)1.3振荡电路的稳幅方法1)热敏电阻稳幅RC桥式振荡电路的稳幅作用是靠热敏电阻Rf实现的。Rf是负温度系数热敏电阻,当输出电压升高,Rf上所加的电压升高,即温度升高,Rf的阻值减小,负反馈增强,输出幅度下降,反之输出幅度增加。若热敏电阻是负温度系数,应放置在R1的位置。若该电路Rf为一固定电阻, 放大器Au为常数。起振时:则要求振荡平衡:则要求,只有当运算放大器进入非线性工作区才能使增益下降达到平衡条件,从而产生严重失真现象。若该电路RF为一负温度系数的热敏电阻起振时:由于信号较弱,热敏电阻RF处于冷态,阻值比较大,放大器Au值较大满足,很快振荡建立。振荡平衡:随信号增强,热敏电阻RF温度升高,阻值减小,放大器Au值自动下降,在运算放大器还末进入非线性工作区时,达到平衡条件。2)二极管稳幅 图2.5 二极管稳幅电路及原理图1 中二极管VD1 和VD2 用以改善输出电压波形,稳定输出幅度。起振时,由于集成运放的输出电压很低,VD1 和VD2 接近于开路,负反馈并联电路的等效电阻近似等于Rf, AF 1,电路产生振荡随着集成运放输出电压的增大,当Rf上的分压超过二极管的正向导通电压时,流过Rf上的电流被分流,负反馈支路的反馈系数增大,迫使AF逐渐等于1,最终电路进入稳幅工作状态。考虑到调试的方便,设计中采用二极管稳幅方法。四、频率步进方案由于要求输出的信号频率范围为20Hz20KHz,频率步进为5Hz,为实现频率的细微调整,尤其是10KHz以上频率的微调,将频率按照10倍频程分为3段:20200200020KHz,每个频段的RC振荡电容分别为0.1F、0.01F、0.001F,由拨码开关J1实现电容的接入。设RC振荡电路串、并支路的电阻分别为和,电阻分别为和。若R1 =R2=R,C1=C2=C,则电路的振荡频率为 (4-1)设频率由步进到,步长为5Hz,则电阻R的变化量为 (4-2)在不同频段(C为不同值)时电阻R的取值和变化见表3-1。表4-1频率变化与电容、电阻的关系频率范围频率(Hz)电阻R()频率增加5Hz时电阻的变化()C=0.1F频率:20200Hz2080K15.924K5031.85K2.9K10015.924K7602007.962K204频率范围频率(Hz)电阻R()频率增加5Hz时电阻的变化()C=0.01F频率:2002KHz20080K1.942K50031.85K3151K15.924K802K7.962K20频率范围频率(Hz)电阻R()频率增加5Hz时电阻的变化()C=0.001F频率:2K20KHz2K80K1985K31.85K3210K15.924K820K7.962K2 通过上面的分析计算知在不同的频段,当频率5Hz步进时,电阻R的变化不同,大到十几K,小到几,由于精度所限,大多数双联电位器的精度为5%,因此为实现频率的微小步进,应将电阻分档,实现频率由粗调到微调的细化。调频时,首先调节100K的双联电位器,再逐级调节10 K、1 K、100、20的电位器,这样可实现频率5Hz步进。五、RC振荡与稳幅电路设计 图5.1 RC振荡电路 图5.1为RC文氏桥振荡与稳幅电路。设计上采用了多级电阻和多级双联电位器实现频率的分段和步进。六、课程设计总结本次设计从电路原理图设计、参数计算、采用分立元器件设计了可输出正弦波和脉冲波的信号发生器,所设计的信号发生器

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论