世界各型核能系统演变.doc_第1页
世界各型核能系统演变.doc_第2页
世界各型核能系统演变.doc_第3页
世界各型核能系统演变.doc_第4页
世界各型核能系统演变.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四代核能系统的研究开发近年来,世界各国提出了许多新概念的反应堆设计和燃料循环方案。2000年1月,在美国能源部的倡议下,十个有意发展核能利用的国家派专家联合组成了“第四代国际核能论坛”(GIF),于2001年7月签署了合约(Charter),约定共同合作研究开发第四代核能系统(Gen )。这十个国家是:美国、英国、瑞士、南非、日本、法国、加拿大、巴西、韩国和阿根廷。第四代核能系统开发的目标是要在2030年左右创新地开发出新一代核能系统,使其在安全性、经济性、可持续发展性、防核扩散、防恐怖袭击等方面都有显著的先进性和竞争能力;它不仅要考虑用于发电或制氢等的核反应堆装置,还应把核燃料循环也包括在内,组成完整的核能利用系统。 GIF主要是由各国政府部门支持的科研院所、高等院校和工业界的专家所组成,自2000年至2002年三年中,先后有100多名专家开过八次研讨会,提出了第四代核能系统的具体技术目标,主要是:1、核电机组比投资不大于1000美元/KW,发电成本不大于3美分/KWh,建设周期不超过三年;2、非常低的堆芯熔化概率和燃料破损率,人为错误不会导致严重事故,不需要厂外应急措施;3、尽可能减少核从业人员的职业剂量,尽可能减少核废物产生量,对核废物要有一个完整的处理和处置方案,其安全性要能为公众所接受;4、核电站本身要有很强的防核扩散能力,核电和核燃料技术难于被恐怖主义组织所利用,这些措施要能用科学方法进行评估;5、要有全寿期和全环节的管理系统;6、要有国际合作的开发机制。GIF在2002年5月在巴黎举行的研讨会上,选定了六种反应堆型的概念设计,作为第四代核能系统的优先研究开发对象。这六种堆型中,有三种是热中子堆,有三种是快中子堆。属于热中子堆的是:超临界水冷堆(SCWR, Supercritical water-cooled Reactor)很高温气冷堆(VHTR, Very-high-temperature gas-cooled reactor)熔盐堆(MSR,Molten salt reactor)属于快中子堆的是:带有先进燃料循环的钠冷快堆(SFR, Sodium-cooled fast reactor)铅冷快堆(LFR, Lead-cooled fast reactor)气冷快堆(GFR, Gas-cooled fast reactor)无论对这六种堆型中的任何一种来说,要从现在的概念设计进展到商用示范,都有大量的研究开发工作要做,需要相当长的时间。参加GIF的十个国家的专家对上述六种核能利用系统的研究开发工作大纲和分工合作进行了研究协调,提出了初步的工作“路线图”(Roadmap),认为从现在的概念设想转变成商业实施(产业化),需要经过四个步骤的工作:第一步:可存在性(生命力,Viability)研究。研究明确要使该方案切实可行的关键所在,并证明其原则可行。第二步:性能研究。工程规模的研究开发和优化,使其性能达到期望的水平。第三步:系统示范。建造中等或较大规模的示范系统以验证设计。第四步:商用实施。目前,GIF的十个国家的参加单位只对第一步和第二步做了初步安排和分工,尚未安排第三步和第四步。目前尚不能确定究竟那一种堆型系统能成功,但按照GIF对第四代的展望计划,将在2020年前后选定一种或几种堆型,2025年前后建成创新的原型机组系统示范,如果在原型机组上能成功地显示这种创新技术在安全性和经济性上的优越性,确实能与其他能源的发电机组竞争,那么大约从2030年起就可广泛地采用第四代核电机组系统,而在那时,现在正在运行的第二代核电机组均将达到60年寿期(批准延寿后)的退役年限。可以用第四代机组去取代。第三代核能发电机组(1)背景从九十年代开始人们逐渐加大了对化学燃料发电引起的环境污染,特别是对温室效应引起的全球变暖的关注,使得核能发电重新提上仪事日程。同时,各核工业发达国家从80年代末到90年代初陆续开始积极为核电的复苏而努力,着手制订以更安全、更经济为目标的设计标准规范,理顺核电厂的安全审批程序。其中,美国率先制订了先进轻水堆核电厂的电力公司要求文件(URD),西欧国家相继制订了欧洲电力公司要求文件(EUR)。为了进一步提高核电厂的安全性,严重事故的预防和缓解,就成为新一代核电技术开发的核心。如果计算到1986年切尔诺贝利事故时为止,世界商用核电厂累计约4000堆年的运行历史,其间发生过两次严重事故,发生概率达到510-4/堆年。这说明,严重事故发生概率虽然低,但并不是不可能发生的;同时亦说明,单纯考虑设计基准事故,不考虑严重事故的预防和缓解,不足以确保工作人员、公众和环境的安全。美国最早开展严重事故的研究,1975年WASH-1400报告首次将概率安全分析技术应用到核电厂,提出了以事件发生频率为依据的事故分类方法。WASH-1400报告首次指出,核电厂风险主要并非来自设计基准事故,而是导致堆芯熔化的严重事故。WASH-1400还首次建立了安全壳失效模式和放射性物质释放模式。在这种背景下,一些发达国家的核电设备供应商利用自己的技术储备和经验积累,开始开发符合电力公司要求文件要求的,具备严重事故预防和缓解措施的先进轻水堆核电厂。同时在提高核电厂的经济性方面亦采取了一系列措施,主要有提高单堆容量,降低单位造价;加深燃耗,延长换料周期,缩短停堆换料时间,提高核电厂的可利用率;延长核电厂的寿命至60年;以及采用模块化设计,缩短建造周期等。 (2)第三代核电机组的设计原则和特点第三代核电机组的设计原则,是在采用第二代核电机组已积累的技术储备和运行经验的基础上,针对其不足之处,进一步采用经过开发验证是可行的新技术,以显著改善其安全性和经济性,满足URD文件或EUR文件和IAEA新建议法规的要求;同时,应能在2010年前进行商用核电站的建造。统观各国已提出的设计方案,有下列特点: 在安全性上,满足URD文件的要求,主要是:堆芯熔化事故概率1.0 X 10-5堆年;大量放射性释放到环境的事故概率1.0 X 10-6堆年;应有预防和缓解严重事故的设施。核燃料热工安全余量15%。在经济性上,要求能与联合循环的天然气电厂相竞争;机组可利用率87%;设计寿命为60年;建设周期不大于54个月。 采用非能动安全系统即利用物质的重力,流体的对流,扩散等天然原理,设计不需要专设动力源驱动的安全系统,以适应在应急情况下冷却和带走堆芯余热的需要。这样,既使系统简化,设备减少,又提高了安全度和经济性。这是革新型的重大改进,是代表核安全发展方向的。 单机容量进一步大型化研究和工程建造经验表明,轻水堆核电站的单位千瓦比投资是随单机容量(千瓦数)的加大而减少的(在单机容量为150万-170万千瓦前均如此)。因此,欧洲法马通、德国电站联盟联合设计的EPR机组的电功率为160万-170万千瓦,日本三菱提出的NP-21型压水堆核电机组的电功率为170万千瓦,俄罗斯也正在设计单机电功率为150万千瓦的WWER型第三代核电机组,美国西屋公司和燃烧公司也在原单机容量为65万千瓦的AP-600型的基础上改进,设计出单机电功率为110120万千瓦的AP-1000型机组。采用整体数字化控制系统国外近年来新建成投产的核电机组,如法国的N4、英国的Sizewell、捷克的Temelin、日本的ABWR均采用了数字化仪控系统。经验证明,采用数字化仪表控制系统可显著提高可靠性,改善人因工程,避免误操作。世界各国核电设计和机组供应商提出的第三代核电机组无一例外地均采用整体数字化仪表控制系统。施工建设模块化以缩短工期核电建设工期的长短对其经济性有显著影响。因此,新的核电机组从设计开始就考虑如何缩短工期。有效办法之一就是改变传统的把单项设备逐一运往工地安装方式,向模块化方向发展:以设计标准化和设备制造模块化的方式尽可能在制造厂内(条件较工地好)组装好,减少现场施工量以缩短工期。美国和日本联合建设的ABWR机组已成功地采用了这种技术。美国AP-1000也将采用模块化设计、建造技术,据称其工期可缩短为48个月。 第二代核能发电机组第二代核能发电是商用核电厂大发展的时期,从上世纪60年代中期到90年代末,即使目前在兴建的核电厂,还大多属于第二代的核能发电机组。前后形成两次核电厂建设高潮,一次是在美国轻水堆核电厂的经济性得到验证之后,另一次是在1973年世界第一次石油危机后,使得各国将核电作为解决能源问题的有力措施。第二代核电厂的建设形成了几个主要的核电厂类型,他们是压水堆核电厂,沸水堆核电厂,重水堆(CANDU)核电厂,气冷堆核电厂,以及压力管式石墨水冷堆核电厂。建成441座核电厂,最大的单机组功率做到150万千瓦,总的运行业绩达到上万个堆年。期间仅出现过两次较大的事故,即三里岛核电厂事故和切尔诺贝利核电厂事故。气冷堆核电厂由于其建造费用和发电成本竞争不过轻水堆核电厂,上世纪70年代末已停止兴建。石墨水冷堆核电厂由于其安全性能存在较大缺陷,切尔诺贝利核电厂事故以后,不再兴建。 从上世纪80年代开始,世界核电进入一个缓慢的发展时期,除亚洲国家外,核电建设的规模都比较小。造成这种局面的原因主要有:1979年世界发生了第二次石油危机,各国经济发展的速度迅速减缓;同时大规模的节能措施和产业结构调整,使得电力需求的增长率大幅度降低,1980年仅增长1.7%,1982年为负增长-2.3%,1983年以前美国共取消了108台核电机组及几十台火电机组的合同。两次核电厂事故对世界核电的发展产生重大影响,公众接受问题成为核电发展的主要关注点,一些欧洲国家如瑞士、意大利、奥地利、瑞典、德国等相继暂停发展核电;同时严格的审批程序,以及为预防事故所采取的提高安全的措施,使核电厂的建设工期拖长,投资增加,导致核电的经济竞争力下降,特别是投资风险的不确定性,阻碍了核电的进一步发展。 中国第二代压水堆改进型机组特点我国核电技术的引进是从引进法国机组开始的。法国百万千瓦级核电技术的原型是美国西屋公司标准312堆型,通过改进批量化建设发展成为标准化的CPY技术。为了提高法国核电的出口竞争力,法玛通公司在CPY的基础上形成了安全性和经济性较好的M310堆型。大亚湾核电站引进的就是这种新型的M310堆型,同时我国开展了百万千瓦级大型商用核电技术的消化、吸收和创新工作。 岭澳一期核电站以大亚湾核电站为参考电站,维持热功率和其它主要运行参数不变,结合经验反馈和核安全技术发展要求,通过37项技术改进,进一步提高了电站安全水平和技术经济性能,总体性能达到了国际同类型在役核电站的先进水平。在建的岭澳二期核电站在大亚湾和岭澳一期核电站的技术基础上,根据运行经验反馈和参考法国同类机组批量改造计划,进行了多项技术改进,其中重大改进有15项。岭澳二期工程按“自主设计、部件采购”模式实施。 CRP1000方案是最近由中广核集团推出的,它以岭澳一期和岭澳二期为参考基础,为进一步满足新版安全法规的要求,相应采纳了一些新技术。在后续项目中,CRP1000方案仍将结合经验反馈,陆续采用新技术,使其安全性和经济性进一步提高。应该说,CRP1000是目前国内安全可靠性、成熟性、经济性等各方面有一定竞争力的核电技术方案。是我国可以在“十一五”和“十二五”期间进行建设的百万千瓦级“二代加”改进核电技术方案。辽宁红沿河核电站项目将采用CPR1000技术方案。CRP1000拟采用的主要新技术有: 为了满足新安全法规、导则的要求,进一步应用的新技术。 在岭澳二期基础上进一步完善数字化仪控技术。 事故处理规程由事故定向转为状态定向。 采用半速汽轮发电机组。原大亚湾与岭澳一期均采用全速汽轮机组,现采用半速汽轮发电机组可具有以下优点:提高机组效率,继而提升电价竞争力;半速机组的供货商选择范围较大,可以形成多家厂商竞争的局面。 首炉堆芯即采用18个月换料方案。原来大亚湾与岭澳一期的堆芯换料为12个月,换料时间改为18个月后,可减少换料大修次数,降低大修成本,并可提高电站可利用率,增加发电量。 反应堆压力容器设计寿命为60年。原来法国(包括美国)的反应堆压力容器设计寿命均为40年,提高到60年后对核电站总的经济效益有很大提高。 堆坑注水技术:有利于防止或延迟RPV熔穿;防止堆芯熔融物与混凝土反应,防止安全壳底板熔穿等。 主回路应用LBB设计理念。 工程建设采用可视化进度控制。 采用三维辅助设计。 第一代核能发电机组第一代核能发电是利用原子核裂变能发电的初级阶段,从为军事服务走向和平利用,时间大体上在上世纪50年代到60年代中期,以开发早期的原型堆核电厂为主。例如,美国西屋电气公司开发的民用压水堆核电厂,希平港(shippingport)核电厂在美国建成;以及通用电气公司(GE)开发的民用沸水堆核电厂,第一个建在美国加利福尼亚湾洪保德湾,以及随后1960年7月建成德累斯顿(Dresden-I)。前苏联1954年在莫斯科附近奥布宁斯克建成第一座压力管式石墨水冷核电厂,英国1956年建成第一座产钚、发电两用的石墨气冷核电厂卡德霍尔核电厂。这一时期的工作,为下一步商用核电厂的发展奠定了基础。第二代核电厂基本上仿照了这一代核电厂的模式,只是技术上更加成熟,容量逐步扩大,并逐步引进先进技术。地下核电站1986年,前苏联切尔诺贝利核电站发生事故以后,核电站设计专家们为提高核电站的安全系数,进行了深入的调查研究。其中有一个研究方向是探讨地下核电站的可行性。结果表明,地下核电站比地上核电站更为安全,并且经济和技术上都是可行的。前苏联核电站反应堆的防护罩只有1.6米厚,反应堆内的熔融核燃料一旦逸出而压到罩壁上,不到1小时就会把罩烧毁。在新的“核电站88”设计中,防护罩也只能耐受4.6个大气压的内部压力,电缆、管道等也只能耐受8个大气压,而在反应堆核燃料熔融事故中蒸汽与氢的爆炸会产生高达1315个大气压的压力。所以,在未能设计出“绝对安全的反应堆”之前,应将核电站建在地下。目前所说的地下核电站,是把反应堆和控制系统建在石质或半石质地层中的中小型核电站。据分析,这种地下核电站至少可保证运营中不危害周围环境,不发生切尔诺贝利核电站那种浩劫式的事故后果,而且便于封存寿终正寝的反应堆,减轻地震对核电站的影响。此外,把核电站转入地下还可以使核电站的建设得以在现有技术水平上得到发展,而无须等到“绝对安全”的核电站设计问世之后再发展核电事业。据分析,把4个机组的1000兆瓦核电站反应堆和控制系统建在50米深的地下,建筑费用只增加 1115%,但如果把关闭核电站所需费用算进去,那么地下核电站的造价比地上的还低。海底核电站人们已经在陆地上建造了几百座核电站,后来又在海上建立起核电站,现在又要将“神火”引向龙宫,建立海底核电站。这可是在“龙王”头上动土的新奇事,没有点勇气和胆略是不行的。海底核电站并不是人们凭空想出来的。它是随着海洋石油开采不断向深海海底发展而提出的一项大胆设想,实际上也是远见卓识的创新。要勘探和开采海底,特别是五、六百米以上深海海底的石油和天然气,需要从陆地上的发电站向海洋采油平台远距离供电。为此,就要通过很长的海底电缆将电输送过去。这不仅技术上要求很高,而且要花费大量的资金。如果在采油平台的海底附近建造海底核电站,就可轻而易举地将富足的电力送往采油平台,而且还可为其他远洋作业设施提供廉价的电源。海底核电站在发电原理上和陆地上的核电站是一样的,都是利用核燃料在裂变过程中产生的热量将冷却的水(或其他液体)加热,使它变成高压蒸汽,再去推动汽轮发电机发电。但是,海底核电站的工作条件要比陆地上的核电站苛刻得多。首先,海底核电站的各个零、部件要能承受住几百米深的海水所施加的巨大压力;其次要求所有设备滴水不漏,密封性好,并能耐海水腐蚀。因此,海底核电站所用的反应堆都安装在耐压的堆舱里,汽轮发电机则密封在耐压舱内。而堆舱和耐压舱都固定在一个大的平台上。考虑到安装方便,海底核电站可在海面上进行安装。安装完工后,将整个核电站和固定平台一起沉入海底,坐落在预先铺好的海底地基上。当核电站在海底连续运行数年以后,像潜水艇一样可将它再浮出海面,以便由海轮拖到附近海滨基地进行检修和更换堆料。美国最先开始研究海底核电站。早在1974年,美国原子能委员会就提出了发电容量为3000干瓦的海底发电站的设计方案。这座海底发电站包括反应堆、发电机、主管道、废热交换器、沉箱等五大部分。它采用的是一种安全性非常好的铀氢化锆反应堆。这种反应堆的特殊之处就在于它的发电能力在极短的时间内能由零迅速上升到几百万千瓦,以后又自动迅速地降落下来。所以,人们将这种反应堆叫做脉冲反应堆、意思是说,它像那汽车转弯的指示灯,一闪一闪地变化很快。别看脉冲反应堆这么一升一降,可它的发电能力大为提高。就以这座发电站来说,它在稳定时的发电能力虽然只有3000千瓦,可是其脉冲发电能力最高可达600万千瓦,是原来的2000倍。核反应堆用的冷却剂,是取用方便的海水。整个核电站在海底安全运行四年后,浮出水面,进行换料检修,然后再沉入海底继续使用。 英国研究海底核电站也较早,是在70年代初期“石油危机”后开始研制试验的。1978年,为了开采海底石油,英国几家公司联合提出了海底核电站的设计方案。它与美国的海底核电站的主要区别是,装置了两座反应堆舱。这样,在一座反应堆停堆换料或检修时,另一堆可照常供电,保证采油平台连续用电的需要。反应堆安置在长60米、直径为10米的耐压舱内,而耐压舱可在500米深的海底长期稳定工作。耐压舱的外壳是用双层5至7厘米厚的钢板制成的,中间灌注混凝土,其厚度为0.5至1.5米并随水深而增大。汽轮发电机共装备了3台,也分别密封在耐压舱内,以确保电气供应的需要。海上核电站在碧蓝色辽阔的大西洋海面上,漂浮着一座比足球场还大的环形小岛。岛上高大的厂房隐约可见。入夜,小岛灯火通明,宛若镶嵌在海上的串串明珠,十分引人注目。这座鲜为人知的“小岛”是干什么用的呢?如果你知道它是一座海上核电站,一定会感到惊奇,也可能在脑海里出现不少小问号:核电站建在海上不污染海水吗?发出来的电又怎么送出去?建造海上核电站的投资比陆地上的高吗?实际上,为建造这种海上核电站,科学家们就为诸如此类的问题争论了近10年,最后在1982年12月美国原子核协调委员会才批准建造海上核电站的计划,并同意设计用于电站的核反应堆。美国西屋电气公司负责设计这种漂浮在海上的核电站。它是在一个长130米、宽120米和深12米的铁制浮动箱上建造的小型核反应堆。浮动箱露出水面3米,而有9米处于水下。整个核电站重约16万吨,可以在深15米的浅海中漂浮。核电站好像被围在一个环形岛上。其实,那是为了防止凶猛的海潮和巨大的海浪冲击核电站而设置的圆形防波堤。这种防波堤造得非常坚固,是用1.7万多个像星状一样的钢筋混凝土堆桩垒成的,而且在堤的下面还有好多个长60米的混凝土沉箱作地基支承着。在堤上还建有水闸,以便海水进入核电站周围,作为反应堆工作时的冷却用水。但当大型油轮高速驶近核电站附近的海面,或者特别大的海潮来临时,必须将闸门关上。 海上核电站可先在海港内建造,然后用大轮船像拖驳船一样拖向离海岸不远的浅海区,或者海湾附近。电站发出的强大电力,可通过海底电缆与岸上的电网接通。有人可能担心核反应堆会将带放射性的物质排入海水,影响水中生物和人类的生存与安全。其实,这种忧虑是多余的,因为海上核电站和陆地上的核电站一样,都有专门的废水、废料处理措施和办法,绝不会把带放射性物质的废水直接排入海水中。从世界上第一座核电站的建立到现在的几十年历史,有力地证明了不论是陆地上的核电站或是建造在海上的核电站,都没有出现这种污染现象。与此相反,由于建有较高大的防波堤,能引来鱼、虾回游,便于海洋生物的养殖和捕捞。在海上建造核电站的一个重要的优点是,造价要比陆地上的核电站低。这一点是很吸引人的,因为在同样的投资条件下可以建造更多的核电站。海上核电站的另一个长处是,在选核电站地址时,不像在陆地上那样要考虑地震、地质等条件,以及是否在居民稠密区等各种情况的影响,而且选择的余地大。这种核电站还有一个独特的优点是,海上的工作条件几乎到处都一样,不存在陆地上那种“因地而异”的种种问题。这样,就可以使整个核电站像加工产品一样,按标准化的要求进行制造。结果,建造出的核电站全都模样相同,像多胞胎的兄弟一样。因而,能像工业上的流水线作业方式来制造一批核电站,既简化了生产过程,又方便了使用,而且还可大大降低建造成本,缩短建造的时间。现在,人们对这种灵活方便的海上核电站已从怀疑、忧虑转变到发生兴趣,特别是像英国、日本、新西兰等岛国,陆地面积适宜建造核电站的地方少,而海岸线却很长,就可充分利用这一优势,大力发展海上核电站,使辽阔的海面上镶嵌更多、更大的明珠!混合堆混合堆概念的提出令人十分欣慰的是,氘、氚聚变不仅是一个巨大的能源,而且是一个巨大的中子源。我们可以利用聚变反应室产生的中子,在聚变反应室外的铀238、钍232包层中,生产钚239或铀233等核燃料。这就是所谓聚变裂变混合堆,简称混合堆。混合堆是一个可供选择的堆型。铀235原子核一次裂变,可以放出2.43个中子;氘、氚一次聚变,只放出1个中子,比铀235一次裂变放出的中子少;但由于铀235吸收中子后有一部分会变成铀236而不裂变,所以铀235每次平均要吸收1.175个中子才能裂变,要求铀235质量大,如果按相同质量比较,氘、氚聚变放出的中子数,是铀235裂变释放的净中子数的43倍以上。氘、氚聚变时释放的能量,80变成聚变时放出的中子的动能。因而氘、氚聚变不仅释放的中子数量多,而且释放的中子能量高。铀235裂变放出的中子能量大多为100200万电子伏,而氘、氚聚变放出的中子,能量高达140O万电子伏。然而要直接利用高能量中子的这部分动能是很困难的。可是从生产核燃料的角度来看,一个聚变中子的作用比一个裂变中子的作用大得多。这是因为高能聚变中子轰击到铀238及钍232靶上,可以产生一系列串级的引起中子和核燃料增殖的核过程,释放出比聚变中子能量稍低但数量增加几倍的次级中子。这些次级中子,除了一部分仍可使铀238及钍232裂变继续放出中子外,还有一部分可以使铀238及钍232变成钚239及铀233等优质核燃料。在适当厚的天然铀靶内,一个聚变中子可以生产出22倍于它所携带的能量,并获得5个钚239原子核。由于这个原因,如果在聚变反应室外放置一层足够厚的由天然铀、铀238或钍232组成的再生区,聚变产生的中子,就可以在再生区生产钚239及铀233,并释放出裂变能。这个再生区又叫混合堆的裂变包层。当然聚变中子也可以使再生区中的锂变成氚,补充氚的消耗。根据这种考虑,早在1953年,美国劳伦斯利弗莫尔实验室的鲍威尔,就提出了建立聚变裂变混合堆的建议。正是由于使用聚变产生的中子,有可能比军用生产堆生产出更多的核武器用的钚239,所以美、前苏联、英聚变研究的早期,是高度保密的。后来看到这种方式一时难以成功,才互相解密,开展了大规模的国际合作。混合堆的难题由于聚变反应室壁和高温等离子体的相互作用,会使反应室壁发热。目前多希望用锂或锂的化合物来冷却它,以便在冷却反应室壁的同时增殖氘。估计在用锂冷却的条件下,反应室壁将达到800以上的高温,比目前钠冷快堆燃料元件包壳的使用温度高200多摄氏度。如此高的温度及高能中子、离子、射线和中性原子的轰击,使聚变反应室壁的工作条件,比裂变堆中的结构材料的工作条件苛刻得多。由于聚变反应室壁难以更换,为了满足经济运行的要求,希望反应室壁能长期工作,甚至工作到混合堆退役。目前这种材料还没有找到。因此研制反应室壁的结构材料,研究冷却剂对它的腐蚀,是实现混合堆的重要课题。对于磁约束的混合堆来说,如果采用液态锂作为冷却剂,由于它在强磁场中的磁流体阻力,要消耗大量的泵功率来驱使它流动,将严重影响其经济性的改善。如果在聚变反应室外加上裂变包层后,则上述问题更难解决。这是由于裂变包层中的铀和钍在聚变反应室放出的中子轰击下,有强烈放射性。对于托卡马克型聚变裂变混合堆,如采用离子回旋加热,就会有数十甚至上百根巨大的同轴电缆要穿过裂变包层到聚变反应室。这种电缆除了会减少包层覆盖率外,电缆中的绝缘材料,也可能在强烈的中子轰击下破坏。目前还考虑用低混杂波电流驱动使托卡马克在接近于稳态的状态下运行。如果这样,则穿过包层的波导管会使裂变包层留下不少难以屏蔽的空洞,大量中子及射线从空洞中泄漏,使工作人员难以接近。其他类型的聚变裂变混合堆也有类似问题。由于混合的裂变包层是在没有链式反应的状态下运行,因而一旦出现链式反应的条件,就会形成切尔诺贝利核电站那样的严重事故。这是由于按照混合堆设计要求以及混合堆空间的限制,它不存在裂变反应堆那种紧急停堆保护系统。混合堆的裂变包层靠近聚变反应室一侧,由于中子通量高,因而功率比另一侧高得多。与裂变反应堆相比,混合堆裂变包层的功率分布的梯度大得多,功率分布的不均匀,给混合堆的运行造成了困难。由于上述原因,不少学者认为,混合堆不仅将聚变堆和裂变堆的优点结合在一起,也将两者的困难结合在一起。有的学者甚至认为,混合堆比纯聚变堆还困难。但不管怎样,混合堆仍然是一个可供考虑的途径。混合堆的不同型根据混合堆裂变包层工作方式的不同,可将混合堆分为快裂变型混合堆和抑制裂变型混合堆。快裂变型混合堆就是利用聚变产生的高能快中子,在裂变包层产生一系列串级的核过程,大量生产钚239或铀233核燃料。与此同时,由于铀238、钚239或铀233的大量裂变,也在裂变包层产生大量裂变热。抑制裂变型混合堆,则是在包层中放入大量的铍等慢化材料,使聚变产生的高能快中子很快慢化为热中子等能量低的中子。这些中子难以使铀238、钍232裂变,主要是使它们变成钚239、铀233。通过频繁的后处理,将钚239、铀233及时提取出来,减少它们裂变的可能性。快裂变型混合堆可以有效地生产核燃料,抑制裂变型混合堆不能有效地生产核燃料,而且过多地后处理使生产成本增加。但抑制裂变型混合堆由于裂变包层中裂变几率少,裂变热的产生也就大大减少,可以简化包层内裂变热的导出问题。混合堆的发展中,需结合具体的堆型,研究堆的启动、控制、加料、能量的传递与转换、放射性屏蔽及检修等有关工程问题。托卡马克虽然目前比其他聚变途径成熟,但如果用托卡马克建造混合堆,结构复杂,不便进行混合堆的总体布置,维修困难。如果不采用昂贵的清除杂质的偏滤器,这种堆由于杂质的积累,再加上磁场的不稳定性,只能脉冲运行。由于脉冲运行,结构材料要经历温度循环和应力循环,而且冷却剂回路,要能够储存脉冲时产生的能量,以保证功率相对稳定的输出。串级磁镜混合堆,由于可以稳态运行,为实现聚变而消耗的能量的利用效率高,便于检修和屏蔽,将可能是有前途的堆型。混合堆的相对优势快堆和混合堆一样,也是同时生产能量及核燃料的工厂。但和混合堆相比,快堆有3个缺点:第一,要有很大的初始装料,例如120万千瓦的“超凤凰”快堆,要装4吨核燃料;而混合堆不需要投入铀235或钚239等核燃料,可以直接用天然铀或核工业中积存下来的贫铀、乏燃料。第二,快堆倍增时间较长,要每过6年甚至30多年,才能增殖出一座相同功率的快堆用的核燃料。因此一座快堆增殖的核燃料除自身消耗外,只能在积累到一定量后,“养活”一座快堆;而混合堆生产的钚239或铀233,比相同功率的快堆多几倍到十几倍,因而可以用混合堆来“养活”几倍甚至十几倍于它的相同功率的压水堆或快堆;第三,快堆和压水堆一样,都要求在实现链式反应的状态下运行;而用混合堆生产钚239或铀233时,不需要达到实现链式反应的条件,因而有可能更加安全。聚变堆为了获得有益的能量输出,要求聚变产生的能量,远大于为创造实现聚变的条件而消耗的能量。混合堆只要求聚变产生的能量与消耗的能量差不多相等就可以了,因而它对聚变的要求比纯聚变堆容易些。目前的聚变技术,特别进展得比较快的托卡马克,虽然在个别孤立的指标上达到或接近于为设计混合堆所要求的条件,但是从工程观点来看,这些技术还远没有成熟。建造聚变裂变混合堆的首要条件,是需要有一个聚变反应室作为堆芯,它能连续而稳定地提供大量廉价的中子。即使不能连续和稳定地运行,至少也应能按照需要周期地运行。而目前的聚变装置,都耗资巨大,虽然有可能在短暂的时间里提供相当数量的中子,却不能连续和稳定,或按照需要周期地运行。专家们估计,不经过3040年的努力,要建造一个稳定、廉价的聚变中子源是不可能的。对于以磁约束实现聚变的混合堆,从聚变区逸出的离子和中子,会使聚变反应室壁受到严重的辐照损伤。反应室壁受到轰击后溅射出来的杂质,进入等离子体后又会使聚变区温度降低而熄火;对于惯性约束,反应室壁受到的射线及离子射线的轰击也很严重。因此研究聚变区内约束等离子和实现聚变的条件,研究等离子体与聚变反应室壁的相互作用,是研制混合堆要解决的问题。道路曲折,目标明确科学技术的发展过程中,会遇到困难,发生曲折和反复,是正常的,不足为奇。在世纪之交,围绕法国“超凤凰快堆”的争论即是一例。这是以中国神话一种从自己的灰烬中获得永生的鸟的名字来命名的核电站,早在十多年前就曾并入法国电力公司的电网,虽正常运转时间不长,但作为技术探索,提供的经验却是宝贵的。目前在俄罗斯、日本、印度等就有8座快堆,即快中子增殖反应堆正在正常运行。当然,不应当否认现在快堆发电还存在一些技术问题,但是,只要重视,问题是可以解决的。从根本上讲,快堆不仅具有固有的安全性,而且具有很好的经济性。与热堆核电站相比,快堆核电站对核燃料的利用率高出了6070倍,同时快堆还能焚烧掉长寿命放射性锕系元素。快堆核电站和热堆核电站能相辅相成地为人类提供安全、经济和洁净的电能。有远见的国家,是不会忽视对快堆核电开发的,例1995年,日本的装机容量为28万千瓦的快堆“文殊”号,就成功地进行了发电、供电试验。因此,日本政

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论