



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数动点问题的学习归纳模式1:平行四边形例题1:在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S.求S关于m的函数关系式,并求出S的最大值; (3)若点P是抛物线上的动点,点Q是直线y=x上的动点,判断有几个位置能使以点P、Q、B、0为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.练习:如图,抛物线与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF/DE交抛物线于点F,设点P的横坐标为m用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?设BCF的面积为S,求S与m的函数关系 模式2:直角三角形例题2:如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且PBD为直角三角形,求点P的坐标 练习:如图1,直线和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0)(1)试说明ABC是等腰三角形;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度当其中一个动点到达终点时,他们都停止运动设M运动t秒时,MON的面积为S 求S与t的函数关系式;设点M在线段OB上运动时,是否存在S4的情形?若存在,求出对应的t值;若不存在请说明理由;在运动过程中,当MON为直角三角形时,求t的值模式3:等腰三角形例题3:已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA2,OC3,过原点O作AOC的平分线交AB于点D,连接DC,过点D作DEDC,交OA于点E(1)求过点E、D、C的抛物线的解析式;(2)将EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在成立,请说明理由练习:已知抛物线yax2bxc(a0)经过点B(12,0)和C(0,6),对称轴x2(1)求该抛物线的解析式(2)点D在线段AB上且ADAC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一个动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若存在,请说明理由(3)在(2)的结论下,直线x1上是否存在点M,使MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在,请说明理由ABCOPQDyx模式4:相似三角形例题4:已知:在平面直角坐标系中,抛物线()交轴于A、B两点,交轴于点C,且对称轴为直线(1)求该抛物线的解析式及顶点D的坐标;(2)若点P(0,t)是轴上的一个动点,请进行如下探究:探究一:如图1,设PAD的面积为S,令WtS,当0t4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;探究二:如图2,是否存在以P、A、D为顶点的三角形与RtAOCyxOCBAD相似?如果存在,求点P的坐标;如果不存在,请说明理由练习:如图,已知抛物线经过A(2,0),B(3,3)及原点O,顶点为C(1)求抛物线的函数解析式(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大产权房合同范本
- 美术教师个人工作计划2025(5篇)
- 普通员工个人工作计划范文(5篇)
- (新)村后备干部考试参考试题(+答案)
- 公司庆典开幕词范例
- 家电市场消费趋势报告
- 企业管理-督查工作流程 SOP
- 骨科康复 试题及答案
- 光伏组件生产考试试题及答案
- 2025年审计招聘笔试题及答案
- 《防范于心反诈于行》中小学防范电信网络诈骗知识宣传课件
- GB 4793-2024测量、控制和实验室用电气设备安全技术规范
- 拱板屋面施工方案
- 农村电网改造合同协议书
- 2021版十八项医疗质量安全核心制度附流程图
- 门窗安装用工合同模板
- 人教版(2024年新版)七年级上册美术全册教学设计
- 心电图并发症预防及处理
- TCECA-G 0286-2024 户式空气源热泵水机三联供系统技术规范
- 多感官体验融合算法与模型
- 2020六年级上册综合实践教案(苏少版)
评论
0/150
提交评论