数学北师大版七年级下册《1.7 整式的除法》教学设计.doc_第1页
数学北师大版七年级下册《1.7 整式的除法》教学设计.doc_第2页
数学北师大版七年级下册《1.7 整式的除法》教学设计.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.7整式的除法教案教学目标:1、经历探索单项式除以单项式运算法则的过程,会进行单项式除以单项式的除法运算,培养学生独立思考、集体协作的能力;2、理解单项式与单项式相除的算理,发展有条理的思考及表达能力.教学重点:可以通过单项式与单项式的乘法来理解单项式的除法,要确实弄清单项式除法的含义,会进行单项式除法运算.教学难点:确实弄清单项式除法的含义,会进行单项式除法运算.教学过程:(一)创设情境,复习导入1.请同学们回答如下问题,看哪位同学回答得又快又准确计算:(1)aa; (2)yy; (3)1010; (4)yy.以上计算是什么运算?能否叙述这种运算的法则?法则的使用条件与结论各是什么?学生活动:学生回答上述问题.aa=a(a0,m,n为正整数,且mn)2.计算并回答问题:3a2b2ab2c2 以上计算是什么运算?能否叙述这种运算的法则?3.填空:( )3ab=12abx(学生回答结果)(二)指出问题,探究新知这个问题就是让我们去求一个单项式,使它与3ab相乘,积为12abx,这个过程能列出一个算式吗?由一个学生回答,教师板书.12a3b2x33ab2这就是我们这节课要学习的单项式除以单项式运算 (板书课题). 师生活动:因为4a2x33ab2=12a3b2x3所以12a3b2x33ab2=4a2x3(在上述板书过程中填上所缺的项)由4a2x33ab2得到12a3b2x3,系数4和3,同底数幂a2、a及x3、b2分别是怎样计算的?(一个学生回答)那么由12a3b2x33ab2得到4a2x3又怎样计算呢?结合引例,教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述,教师板书.结论:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.如何运用呢?比如计算:6a2b5c3 b3c3=(6)a2b53c33=10a2b2学生活动:在教师引导下,根据法则回答问题(教师板书)(三)尝试计算,熟悉法则例1 计算:(1)28x4y27x3y; (2)5a5b3c15a4b;(3)a2x4y3(axy3) (4)(6108)(3105)学生活动:学生自己尝试完成计算题,同桌互相帮助,若有问题,进行改正.(四)强化学习,掌握法则练习一下列计算是否正确?如果不正确,指出错误原因并加以改正.(1)2x2y3(3xy)= xy2; (2)10x3y3 z2x2y=5xy2;(3)4x2y2 xy2=2x; (4)15108(5106)=3102学生活动:学生细心观察思考后,分别找4个学生回答,其他学生对他们的回答进行肯定、否定或纠正.练习二计算:(1)10ab3(-5ab); (2)-8a2b3c6ab2;(3)-21x2y4(-3x2y3); (4)(4109)(-2103)练习三把图中左图圈里的每一个代数式分别除以2x2y,然后把商式写在右圈里学生活动:学生理解题意后,分别由3个学生说出答案,其他学生给予判断.例2 计算:(1)(6x2y3)2(2xy2)2 (2)7m2(2m3p)27m5 学生活动:学生在练习本上完成,3名学生板演,然后学生自评.(五)自我反思,归纳小结通过这节课的学习,你有哪些收获和体会?由学生完成本节课的归纳与总结,教师给予引导或补充.小结:本节课主要学习了单项式除以单项式的运算.在运用法则应注意以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论