3求参数取值问题策略.doc_第1页
3求参数取值问题策略.doc_第2页
3求参数取值问题策略.doc_第3页
3求参数取值问题策略.doc_第4页
3求参数取值问题策略.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

参数取值问题求解策略一、参变分离,利用最值处理若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。例1已知当xR时,不等式a+cos2x54sinx+恒成立,求实数a的取值范围。分析:在不等式中含有两个变量a及x,其中x的范围已知(xR),另一变量a的范围即为所求,故可考虑将a及x分离。解:原不等式即:4sinx+cos2x3即a+2,上式等价于或,解得a8.说明:注意到题目中出现了sinx及cos2x,而cos2x=12sin2x,故若把sinx换元成t,则可把原不等式转化成关于t的二次函数类型。另解:a+cos2x54sinx+即a+12sin2x0,( t1,1)恒成立。设f(t)= 2t24t+4a+则二次函数的对称轴为t=1,f(x)在1,1内单调递减。只需f(1)0,即a2.(下同)例2设直线过点P(0,3),和椭圆顺次交于A、B两点,试求的取值范围.分析:本题中,绝大多数同学不难得到:=,但从此后却一筹莫展, 问题的根源在于对题目的整体把握不够. 事实上,所谓求取值范围,不外乎两条路:其一是构造所求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系.所求量的取值范围把直线l的方程y = kx+3代入椭圆方程,消去y得到关于x的一元二次方程xA= f(k),xB = g(k)得到所求量关于k的函数关系式求根公式AP/PB = (xA / xB)由判别式得出k的取值范围思路1:从第一条想法入手,=已经是一个关系式,但由于有两个变量,同时这两个变量的范围不好控制,所以自然想到利用第3个变量直线AB的斜率k. 问题就转化为如何将转化为关于k的表达式,到此为止,将直线方程代入椭圆方程,消去y得出关于的一元二次方程,其求根公式呼之欲出.解1:当直线垂直于x轴时,可求得;当与x轴不垂直时,设,直线的方程为:,代入椭圆方程,消去得,解之得 因为椭圆关于y轴对称,点P在y轴上,所以只需考虑的情形.当时,所以 =.由 , 解得 ,所以 ,把直线l的方程y = kx+3代入椭圆方程,消去y得到关于x的一元二次方程xA+ xB = f(k),xA xB = g(k)构造所求量与k的关系式关于所求量的不等式韦达定理AP/PB = (xA / xB)由判别式得出k的取值范围综上 .思路2: 如果想构造关于所求量的不等式,则应该考虑到:判别式往往是产生不等的根源. 由判别式值的非负性可以很快确定的取值范围,于是问题转化为如何将所求量与联系起来. 一般来说,韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于不是关于的对称关系式. 原因找到后,解决问题的方法自然也就有了,即我们可以构造关于的对称关系式.解2:设直线的方程为:,代入椭圆方程,消去得 (*)则 令,则,在(*)中,由判别式可得 ,从而有,所以,解得.结合得. 综上,.说明:范围问题不等关系的建立途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等. 本题也可从数形结合的角度入手,给出又一优美解法.二、数形结合若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果。尤其对于选择题、填空题这种方法更显方便、快捷。例3当x(1,2)时,不等式(x1)2logax恒成立,求a的取值范围。xyo12y1=(x-1)2y2=logax分析:若将不等号两边分别设成两个函数,则左边为二次函数,图象是抛物线,右边为常见的对数函数的图象,故可以通过图象求解。解:设y1=(x1)2,y2=logax,则y1的图象为右图所示的抛物线,要使对一切x(1,2),y11,并且必须也只需当x=2时y2的函数值大于等于y1的函数值。故loga21,a1,12p+x恒成立的x的取值范围。分析:在不等式中出现了两个字母:x及P,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将p视作自变量,则上述问题即可转化为在2,2内关于p的一次函数大于0恒成立的问题。略解:不等式即(x1)p+x22x+10,设f(p)= (x1)p+x22x+1,则f(p)在2,2上恒大于0,故有:即解得:x3.4oxy例5关于x的方程9x+(4+a)3x+4=0恒有解,求a的范围。分析:题目中出现了3x及9x,故可通过换元转化成二次函数型求解。解法1(利用韦达定理):设3x=t,则t0.则原方程有解即方程t2+(4+a)t+4=0有正根。 即解得a8.4oxy解法2(利用根与系数的分布知识):即要求t2+(4+a)t=0有正根。设f(x)= t2+(4+a)t+4.10.=0,即(4+a)216=0,a=0或a=8.a=0时,f(x)=(t+2)2=0,得t=20,符合题意。a=8.20. 0,即a0时,f(0)=40,故只需对称轴,即a4.a8综合可得a8.三、几何含量解析几何中确定参变量的取值范围历来是各级各类测试及高考命题的热点。由于此类问题综合性强,且确定参变量取值范围的不等量关系也较为隐蔽,因而给解题带来了诸多困难。为此,我们有必要总结和归纳如何寻找或挖掘不等量关系的策略和方法。在几何问题中,有些问题和参数无关,这就构成定值问题,解决这些问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式来证明该式是恒定的。解析几何中的最值问题,一般先根据条件列出所求目标函数关系式,然后根据函数关系式手特征选用参数法,配方法,判别式法,应用不等式的性质,以及三角函数最值法等求出它的最大值或最小值。充分运用各种方法学会解圆锥曲线的综合问题(解析法的应用,数形结合的数学思想,圆锥曲线与圆锥曲线的位置关系,与圆锥曲线相关的定值问题,最值问题,应用问题和探索性问题)。研究最值问题是实践的需要,人类在实践活动中往往追求最佳结果,抽象化之成为数学上的最值问题,所以最值问题几乎渗透到数学的每一章。解析几何中的最值问题主要是曲线上的点到定点的距离最值,到定直线的距离最值,还有面积最值,斜率最值等,解决的办法也往往是数形结合或转化为函数最值。而一些函数最值,反而可以通过数形结合转化为解析几何中的最值问题。1几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决。2代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值。求函数最值常用的方法有配方法、判别式法、重要不等式法、三角函数的值域法、函数的单调性法。例6已知椭圆C:和点P(4,1),过P作直线交椭圆于A、B两点,在线段AB上取点Q,使,求动点Q的轨迹所在曲线的方程及点Q的横坐标的取值范围.将直线方程代入椭圆方程,消去y,利用韦达定理利用点Q满足直线AB的方程:y = k (x4)+1,消去参数k点Q的轨迹方程分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。其实,应该想到轨迹问题可以通过参数法求解. 因此,首先是选定参数,然后想方设法将点Q的横、纵坐标用参数表达,最后通过消参可达到解题的目的.由于点的变化是由直线AB的变化引起的,自然可选择直线AB的斜率作为参数,如何将与联系起来?一方面利用点Q在直线AB上;另一方面就是运用题目条件:来转化.由A、B、P、Q四点共线,不难得到,要建立与的关系,只需将直线AB的方程代入椭圆C的方程,利用韦达定理即可.通过这样的分析,可以看出,虽然我们还没有开始解题,但对于如何解决本题,已经做到心中有数.在得到之后,如果能够从整体上把握,认识到:所谓消参,目的不过是得到关于的方程(不含k),则可由解得,直接代入即可得到轨迹方程。从而简化消去参的过程。解:设,则由可得:,解之得:(1)设直线AB的方程为:,代入椭圆C的方程,消去得出关于 x的一元二次方程:(2) ,代入(1),化简得:(3)与联立,消去得:在(2)中,由,解得 ,结合(3)可求得 故知点Q的轨迹方程为: ().说明:由方程组实施消元,产生一个标准的关于一个变量的一元二次方程,其判别式、韦达定理模块思维易于想到. 这当中,难点在引出参,活

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论