初中数学公开课教学设计 §3.6 三角形的中位线(一)_第1页
初中数学公开课教学设计 §3.6 三角形的中位线(一)_第2页
初中数学公开课教学设计 §3.6 三角形的中位线(一)_第3页
初中数学公开课教学设计 §3.6 三角形的中位线(一)_第4页
初中数学公开课教学设计 §3.6 三角形的中位线(一)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第 1 页 共 11 页 初中数学公开课教学设计初中数学公开课教学设计 3 6 3 6 三角形的三角形的 中位线中位线 一一 部分预览 3 6 三角形的中位线 一 教学目标 知识与技能 1 理解并掌握三角形中位线的概念和性质 2 经历探索三角形中位线性质的过程 体会转 化的数学思想 3 进一步强化运用中心对称的性质研究平面图 形的性质 提高学生的推理能力 数学思考 在探索三角形中位线性质的活动过程中 通过对 图形的观察 测量 发展学生的几何直觉 通过对证 明思路的剖析 发展学生的数学联想能力 解决问题 1 能运用三角形中位线的性质解决一些具体的 数学问题 2 通过对例 1 的引申拓展的总结反思 获得对 中点四边形 的深刻认识 情感与态度 1 通过情境问题的研究 提高学生学习数学的 第 2 页 共 11 页 兴趣 提高对学好数学重要性的认识 2 通过三角形中位线性质的探索研究 树立学 生的自信心和面对困难解决问题的决心 3 培养学生独立思考 大胆发表个人见解的学 习品质 教学重点 1 探索并掌握三角形中位线的性质 2 例 1 的引申和拓展 教学难点 1 运用转化思想解决三角形中位线性质问题 2 运用中心对称的性质论证三角形中位线的性 质 教学过程 一 创设问题情境 产生认知冲突 激发探索欲 望 上初二的小明和小亮是同村一对很要好的伙伴 对数学有共同的兴趣爱好使他们经常在一起探讨数学 问题 双休日的一天 他们相约来到村头的桃花潭 他 们在潭边的一棵桃树 A 点 坐下 小亮望着对岸的一 棵桃树 B 点 忽然对小明提出一个问题 小明 旁边这棵桃树和对岸的桃树相距多远 用工具测 第 3 页 共 11 页 量一下 不就行了吗 小明立即回答 那你怎样 运用测量工具测出两棵桃树的距离呢 可以这样 在潭边找到可以直接到达 A B 两点的一个恰当的点 O 用皮尺连接 AO BO 并分别延长到点 C 和点 D 使 AO OC BO OD 用皮尺测量出 CD 的长就可以知道 AB 的长了 小明边说边在地上画出了示意图 如 图 1 亲爱的同学们 你说小明的测量方案正确吗 有 依据吗 停顿 让学生思考 小亮对小明说 你的测量方案可行 而且用全 等三角形的知识可以说明他的正确 但我还有一种简 便的方法 什么好方法 说出来听听 我不 需要延长 AO BO 只要用皮尺找到他们的中点 M 和 N 用皮尺量出 MN 的长度我就可以知道 A B 两点间 的距离了 如图 2 小明一听 有点丈二和尚摸不着头脑 就问小亮 你的测量依据是什么 小亮固作神秘状 慢言细 语地说 这是嘛 三角形的中位线 亲爱的同学们 你知道小亮要说的是什么吗 他 的测量方案正确吗 二 满足学生需求 比较剖析概念 呈现学习新 知 第 4 页 共 11 页 1 介绍 三角形的中位线 的概念 小亮说的 三角形的中位线 是什么图形呢 就 是 连接三角形两边中点的线段 如图 2 线段 MN 就是 OAB 的中位线 简要说明 三角形的中位线 和三角形的高 中 线 角平分线 可并称为 三角形四杰 是三角形 中四条重要的线段 2 剖析 三角形的中位线 和 三角形的中线 这两个线段都是有 中点 作为端点的线段 只 不过 三角形的中位线 的两个端点都是边的中点 而 三角形的中线 的另一个端点是三角形的顶点 一个三角形有三条中线 也有三条中位线 3 制造问题悬念 指明研究方向 我们已经知道 三角形的一条中线可以把三角形 分成两个面积相等的三角形 它的长度位于相邻两边 之差和两边之和的一半之间 前面补充过 那么三角 形的中位线具有什么特殊的性质呢 下面我们就一起 走进 探索世界 三 组织实践活动 引导观察发现 启发推理论 证 画一画 第 5 页 共 11 页 1 在方格纸上任意画一个格点三角形 ABC 使 BC 6 2 分别取 AB AC 的中点 D E 连接 DE 量一量 用刻度尺量出 DE 的长 猜一猜 同学们所画的三角形各不相同 为什么中位线 DE 的长都是 3 呢 它的长度由谁决定 怎样决定的 由 BC 的长度决定 验一验 请同学们再试一试 任意画一个格点三角形 ABC 使 AC 4 取 BA BC 的中点 M N 连接 MN 量 一量 MN 的长度 你发现了什么 与上面发现的结论 一致吗 说一说 你能用一句话概括你的发现吗 三角形的中位 线等于第三边的一半 想一想 三角形的中位线除了具有 等于第三边的一半 外 它还具有什么性质 请观察图形 实践测量后 再回答你的发现 三角形的中位线平行第三边 你是怎么知道的 预见 画的三角形很特殊 第 6 页 共 11 页 三角形的中位线的两个端点正好是格点 用三角 板 推 出来的 量同位角获得的 证一证 猜想是我们对事物的一种直觉 它还有待于我们 对它进行严密的论证 下面我们师生就共同来解决这 个问题 引导策略一 要证明两直线平行 我们可有哪些 判定方法 学生易回答 同位角相等 两直线平行 内错角相等 两直线平行 同旁内角互补 两直线平 行 这些方法在本题中有发挥作用的余地吗 想一 想 这段时间我们证明两直线平行还可以用什么方法 证平行四边形 我们怎样才能把三角形转化为平行 四边形呢 引导策略二 要证明 能否转化为证明两 线段相等 这可是我们非常熟悉的形式 如何转化 延长 DE 到 F 使 EF DE 这样论证的结论就变为证 明 DF BC DF BC 如图 3 无论从哪个角度进行引导 都要强调 CFE 和 ADE 关于点 E 成中心对称 用中心对称的性质来说 明 如果学生用全等三角形的知识来证明要给予肯定 但同时通过比较来说明用中心对称的知识来解释的简 捷性 第 7 页 共 11 页 如果时间允许或学生提出 也可向学生介绍另一 种进行中心对称变换的方法 即将 ABC 绕点 E 旋转 得到 构成一个大的平行四边形 如图 4 讨论结束后 呼应开头的问题情境 说明小亮测 量方案的正确性 四 尝试运用新知 感受新辟思路 探究例题本 源 1 直接运用 如图 5 已知 D E F 是 ABC 三边的中点 1 若 DEF 的周长是 20 则 ABC 的周长为 2 图中 平行四边形共有 个 分别是 3 图中四个小三角形有何关系 可留下一个思考题 再取 DEF 的三个中点又得 到一个中点三角形 那么这个三角形的周长 面积和 ABC 的周长 面积又有何关系呢 如果继续下去 你发现有什么规律吗 2 综合应用 如图 6 已知直角 点 分别是 三边的 中点 第 8 页 共 11 页 1 线段 和 有何数量关系 请说明理由 2 四边形 是一个什么四边形 为什么 3 例 1 教学 1 唤醒旧知 如图 7 已知 分别是 四边的中点 试问 四边形 是什么四边形 你能用我们过去学过的知识 来判断吗 说说你的思路 2 激活新知 如果用我们刚刚学过的三角形中位线的知识 你 又会怎么来判断 说说你的推理过程 3 比照思考 解题后 你有什么感想 1 运用刚学过的三角形中位线的性质来解决本 题比以前用全等三角形知识来说明更简捷 新知好用 2 运用三角形的中位线的性质来解题 要将中 位线置于一个三角形中 如果三角形不完整 要构造 出三角形 你有什么困惑的地方 平行四边形 这个条件没有用到 教师不语 留下悬念 4 变式引申 平行四边形的中点四边形是平行四边形 那么一 第 9 页 共 11 页 般的四边形的中点四边形又是什么形状呢 如图 8 为什么 5 拓展探索 问题 1 一个四边形的中点四边形可不可以是矩 形 举一例说明 菱形 具备什么条件的四边形才能 保证他的中点四边形是矩形 对角线互相垂直 问题 2 一个四边形的中点四边形可不可以是菱 形 举一例说明 矩形 等腰梯形 具备什么条件的 四边形才能保证他的中点四边形是菱形 对角线相 等 问题 3 通过前面的研究 你认为中点四边形的 形状由原来四边形的什么要素决定 如何决定的 问题 4 讨论到现在 你能明白前面同学们提出 的困惑 为什么平行四边形这个条件对四点四边形形 状的判断没用 的道理了吗 第 5 环节的重心要放在探讨上 使学生获得一个 初步的直觉印象和一个大致的推理过程 由于时间的 限制 不要提出过高 过细的要求 但要求学生课后 对自己的判断要有一个正确的解释并写出推理过程 五 小结学习心得 反思学习方法 检测学习效 果 1 学生自主小结 第 10 页 共 11 页 在教师的引导下 采用学生交流补充的方式完成 本节课的学习小结 教师引导时 要从数学知识 数 学方法 数学思想 解题思路 解题规律以及学习品 质等多角度 多层次地进行反思总结 2 课后自我检测 略 教学反思 3 6 三角形 梯形的中位线 是苏科版八年 级 上册 第三章 中心对称图形 一 的 收官之作 是继 中心对称图形的认识 中心对称图案的 设计 几个具体的中心对称图形的性质和识别 之后的知识 深化 和 拓展 是前面几节知识的 综合 和 提炼 本章以 中心对称 这根 红 线 纵贯全篇 并通过这根红线串联起各大知识块 本章三个单元 以 旋转 开篇 以 中心对称 的 几个具体图形展开 最后以 中心对称变换 掀起高 潮 数学知识循序渐进 数学能力螺旋上升 数学方 法不断强化 数学思想也由 幕后 走上 台前 如此编排有一气呵成之流畅 也有让学生拾阶而上之 自然 符合学生认知规律的内容呈现 让学生在观察 中感受中心对称 在探索中经历中心对称 在运用中 体验中心对称 中心对称 逐步 深入人心 三角形的中位线 这一知识点 就是遵循以上 第 11 页 共 11 页 几个特点而呈现给学生的 它利用中心对称变换 将 三角形的中位线的性质的研究转化为平行四边形性质 的研究 既展示了 几何变换 的数学方法 也渗透 了 转化 的数学思想 更强化了知识的整合度和关 联度 但运用中心对称的性质推理论证三角形中位线 的性质毕竟与学生的常规思维有所冲突 尤其是七年 级下学期学习过 全等三角形 后 反应更为强烈 显得有点 另类 因此 教师在组织本章教学时 要不断强化运用中心对称的性质理解平行四边形 矩 形 菱形 正方形的概念

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论